Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» (КГУ)

Кафедра «Автоматизация производственных процессов»

		УТВЕРЖДАЮ:
		Первый проректор
		/ Змызгова Т.Р. /
«	>>	

Рабочая программа учебной дисциплины АВТОМАТИЗИРОВАННЫЕ РАСЧЕТЫ В ТЕХНИЧЕСКИХ СИСТЕМАХ

образовательной программы высшего образования – программы бакалавриата 27.03.01 – Стандартизация и метрология

Направленность:

Стандартизация, метрология и управление качеством

Форма обучения: заочная

Рабочая программа дисциплины «Автоматизированные расчеты в технических системах» составлена в соответствии с учебными планами по программе бакалавриата «Стандартизация и метрология (Стандартизация, метрология и управление качеством)», утвержденными:

- для заочной формы обучения «28» июня 2024 года.

Рабочая программа дисциплины одобрена на заседании кафедры «Автоматизация производственных процессов» «2» сентября 2024 года, протокол №1.

Рабочую программу составил

Старший преподаватель

Е.М. Кузнецова

Согласовано:

Заведующий кафедрой «Автоматизация производственных процессов»

И.А. Иванова

Специалист по учебнометодической работе Учебно-методического отдела

Г.В. Казанкова

Начальник Управления Образовательной деятельности

И.В. Григоренко

1. ОБЪЕМ ДИСЦИПЛИНЫ

Всего: 3 зачётных единиц трудоёмкости (108 академических часов)

Заочная форма обучения

Duy ywofyoù nofory	На всю	Семестр
Вид учебной работы	дисциплину	5
Аудиторные занятия (контактная работа с		
преподавателем), всего часов	10	10
в том числе:		
Лекции	2	2
Лабораторные работы	8	8
Самостоятельная работа, всего часов	98	98
в том числе:	98	98
Подготовка контрольной работы	18	18
Подготовка к зачету	18	18
Другие виды самостоятельной работы	62	6
(самостоятельное изучение тем (разделов) дисциплины)	02	O
Вид промежуточной аттестации	Зачет	Зачет
Общая трудоемкость дисциплины и трудоемкость по	108	108
семестрам, часов	100	100

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Автоматизированные расчеты в технических системах» относится относится к части, формируемой участниками образовательных отношений блока Б1. Является дисциплиной по выбору.

Изучение дисциплины базируется на результатах обучения, сформированных при изучении следующих дисциплин:

- Математика;
- Информатика.

Результаты обучения по дисциплине необходимы для изучения дисциплин «Автоматизация управления жизненным циклом продукции», «Анализ систем и принятие решений в инженерной и управленческой деятельности», будут использоваться для выполнения разделов выпускной квалификационной работы в части математических расчетов метрологического и исследовательского раздела, а также в последующей инженерной деятельности при проектировании средств и систем измерения и контроля изделий.

Требования к входным знаниям, умениям, навыкам:

- знание основных понятий и методов решения уравнений линейной и векторной алгебры, аналитической геометрии, математического анализа, интегралов и дифференциальных уравнений;
- умение строить алгоритмы последовательностей решения математических задач с применением логических комбинаций справочной литературы и полученных в ходе изучения других дисциплин знаний;
- владение навыками работы с компьютерной техникой, офисными программными пакетами Word, Excel и таблицами данных.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Целью освоения дисциплины «Автоматизированные технических системах» является приобретение студентами знаний применении систем компьютерной математики для автоматизации инженерноознакомление с технической деятельности И наиболее популярными современными математическими пакетами. Практическое введение в MathCAD, Matlab и освоение технически структурного программирования в объёме, достаточном для использования этих систем при изучении соответствующих разделов высшей математики, общетехнических и специальных дисциплин.

Задачами дисциплины являются: изучение современных средств автоматизации математических расчётов, получение навыков для решения задач математического моделирования, вычислительных задач математического анализа, построения геометрических фигур различной степени сложности, решения задач, связанных с матрицами, и исследованием динамических систем.

Компетенции, формируемые в результате освоения дисциплины:

- способностью проводить изучение и анализ необходимой информации, технических данных, показателей и результатов работы, их обобщение и систематизацию, проводить необходимые расчеты с использованием современных технических средств (ПК-17);

В результате изучения дисциплины обучающийся должен:

- Знать основные пользовательские интерфейсы математических пакетов, основные типы данных языка программирования технических расчетов; принципы организации графической системы математических пакетов;
- Уметь решать сложные прикладные задачи с применением математических пакетов;
- Владеть навыками по проведению расчетов и визуализации их результатов в пакетах MathCad, Matlab при проектировании и моделировании технических систем.

Индикаторы и дескрипторы части соответствующей компетенции, формируемой в процессе изучения дисциплины «Автоматизированные расчеты в технических системах», оцениваются при помощи оценочных средств.

Планируемые результаты обучения по дисциплине «Автоматизированные расчеты в технических системах», индикаторы достижения компетенций ПК-1, ПК-4, перечень оценочных средств

№	Код	Наименование	Код	Планируемые	Наименование
Π/Π	индикатора	индикатора	планируемого	результаты	оценочных
	достижения	достижения	результата	обучения	средств
	компетенции	компетенции	обучения		
1.	ИД-1 _{ПК17}	Знать: основные	3 (ИД-1 _{ПК17})	Знает: основные	Вопросы для
		пользовательские		пользовательские	сдачи зачета
		интерфейсы		интерфейсы	
		математических		математических	
		пакетов, основные		пакетов, основные	

		типы данных		типы данных	
		, ,			
		языка		языка	
		программирования		программирования	
		технических		технических	
		расчетов;		расчетов;	
		принципы		принципы	
		организации		организации	
		графической		графической	
		системы		системы	
		математических		математических	
		пакетов		пакетов	
2.	ИД- $2_{\Pi K17}$	Уметь: решать	У (ИД-2 _{ПК17}	Умеет:решать	Вопросы для
		сложные		сложные	сдачи зачета
		прикладные		прикладные	
		задачи с		задачи с	
		применением		применением	
		математических		математических	
		пакетов		пакетов:	
3.	ИД-3 _{ПК17}	Владеть:	В (ИД-3 _{ПК17})	Владеет навыками	Вопросы для
		навыками по		по проведению	сдачи зачета
		проведению		расчетов и	
		расчетов и		визуализации их	
		визуализации их		результатов при	
		результатов при		проектировании и	
		проектировании и		моделировании	
		моделировании		технических	
		технических		систем	
		систем			

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Учебно-тематический план

Заочная форма обучения

Номер раздела,	Наименование раздела,	контак	чество часов стной работы с годавателем
темы	темы	Лекции	Лабораторные работы
1	Пакеты прикладных программ моделирования систем автоматизированного управления техническими средствами. Часть 1: MathCAD.		4
2	Пакеты прикладных программ моделирования систем автоматизированного управления техническими средствами. Часть 2: MATLAB + SIMULINK.	1	4
	Всего:	2	8

4.2. Содержание лекционных занятий

Тема 1. Пакеты прикладных программ (ПП) для моделирования систем автоматизированного управления техническими средствами. Часть 1: ПП MathCAD.

Работа Арифметические матрицами. операторы. Операторы преобразования массивов. Стандартные средства MathCAD для решения задач линейной алгебры. Построение графиков в MathCAD. 2D- и 3D-графики. Полярный график. Построение графиков кусочно-заданных функций. Использование ранжированных переменных. Трассировка решение уравнений графически. Встроенные функции для решения обыкновенных дифференциальных уравнений. Дифференциальные уравнения первого и второго порядка. Системы дифференциальных уравнений. Метод Эйлера. уравнений В частных производных. Структура программы. Программы с ветвлениями. Программирование циклических процессов. Рекурсивные вычисления. Функции доступа к файлам. Файловое представление неоднородных массивов. Моделирование однородных числовых И непрерывных нелинейных динамических Общая И систем. схема структуризации информации 0 причинно-следственных взаимосвязях динамических процессов в объектах моделирования.

Тема 2. Пакеты прикладных программ (ПП) для моделирования систем автоматизированного управления техническими средствами. Часть 2: ПП MATLAB + SIMULINK.

Назначение и состав системы Matlab. Основы работы в Matlab. Встроенные функции для Арифметические вычисления, работа с массивами, построение и редактирование графиков. Работа с М-файлами. Основы программирования в Matlab. Работа в Simulink. Построение блок-схем. Выделение объектов. Операции с блоками.

4.3. Лабораторные занятия

Номер раздела, темы	Наименование раздела, темы	Наименование лабораторной работы	Норматив времени, час. Заочная форма обучения
	Пакеты прикладных программ моделирования систем	1 1	1
	автоматизированного управления техническими	Работа с матрицами и векторами в MathCAD.Задачи линейной алгебры	1
1	средствами. Часть 1: MathCAD.	Создание графиков в MathCAD. Двумерные графики и трехмерные графики	0,5
		Встроенные функции MathCAD для решения обыкновенных уравнений и систем. Решение систем дифференциальных уравнений	0,5
		Первая программа и обработка информации из внешнего файла	0,5
		Циклы и операторы. Программы с ветвлениями и рекурсивные вычисления	0,5

	Пакеты прикладных	Применение программного пакета	
	программ моделирования	MATLAВ при моделировании	2
	систем	технических систем» Часть I	
2	автоматизированного	Применение программного пакета	
	управления техническими	MATLAВ при моделировании	2
	средствами. Часть 2:	технических систем» Часть II	2
	MATLAB + SIMULINK.		
		Всего:	8

4.4. Контрольная работа

Контрольная работа на тему «Применение системы компьютерной алгебры MathCAD для инженерных расчётов» с индивидуальным вариантом задания, выбираемым по сумме двух последних цифр зачётной книжки, и включающая в себя упражнения из разделов алгебры, рассмотренных на лекциях и занятиях контактной работы с преподавателем, такие как решения систем уравнений методом обратной матрицы, методом Гаусса, при помощи встроенных функций, построение графиков функций, вычислений интегралов численно и аналитически.

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При прослушивании лекций рекомендуется в конспекте отмечать все важные моменты, на которых заостряет внимание преподаватель, в частности те, которые направлены на качественное выполнение соответствующей лабораторной работы.

Преподавателем запланировано использование при чтении лекций технологии учебной дискуссии. Поэтому рекомендуется фиксировать для себя интересные моменты с целью их активного обсуждения на дискуссии в конце лекции.

Залогом качественного выполнения лабораторных работ является самостоятельная подготовка к ним накануне путем повторения материалов лекций. Рекомендуется подготовить вопросы по неясным моментам и обсудить их с преподавателем в начале лабораторной работы.

Преподавателем запланировано применение на лабораторных занятиях технологий развивающейся кооперации, коллективного взаимодействия, разбора конкретных ситуаций. Поэтому приветствуется групповой метод выполнения лабораторных работ и защиты отчетов, а также взаимооценка и обсуждение результатов выполнения лабораторных работ.

Выполнение самостоятельной работы подразумевает самостоятельное изучение разделов дисциплины, подготовку к лабораторным занятиям, выполнение контрольной работы, подготовку к зачету.

Рекомендуемая трудоемкость самостоятельной работы представлена в таблице:

Рекомендуемый режим самостоятельной работы

Наименование	Рекомендуемая
вида самостоятельной работы	трудоемкость,
Buda camocronicabilon paoorbi	акад. час.

	Заочная форма обучения
Самостоятельное изучение тем дисциплины:	54
Современное математическое программное обеспечение. Основные виды, возможности и области применения	5
Базовые понятия системы компьютерной алгебры MathCAD	5
Применение универсального математического пакета MathCAD для решения задач алгебры	5
Работа с графикой. Графики кусочно-заданных функций, решение уравнений графически	5
Решение систем обыкновенных дифференциальных уравнений и уравнений в частных производных	5
Программирование и обработка внешних файлов	5
Применение встроенных функций для решения типовых задач проектирования средств и систем автоматизации	5
Базовые элементы математического моделирования различных систем	5
Классические формы математических моделей скалярных динамических систем	5
Математические модели динамических систем в пространстве состояний	5
Математические модели динамических систем в форме проблемных матриц	4
Подготовка к лабораторным занятиям	
(по 1 часу на каждое занятие – очная форма	8
по 2 часа на каждое занятие – заочная форма)	
Выполнение контрольной работы	18
Подготовка к зачету	18
Всего:	98

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

6.1. Перечень оценочных средств

- 1. Контрольная работа
- 2. Отчеты по лабораторным работам
- 3. Банк экзаменационных билетов к зачету

6.2. Процедура оценивания результатов освоения дисциплины

Итоговая аттестация работы по дисциплине «Автоматизированные расчеты в технических системах» производится по билетам, содержащим вопрос и две задачи. Время, отводимое на подготовку и устный ответ, составляет 1 астрономический час.

Результаты зачета заносятся преподавателем в зачетную ведомость, которая сдается в организационный отдел института в день зачета, а также выставляются в зачетную книжку обучающегося.

6.3. Примеры оценочных средств для зачета Примерный список вопросов к зачету

- 1. Обзор современных средств автоматизации математических расчетов и их графической визуализации.
- 2. Числовой, строковый, логический тип данных. Переменные, функции локальные и глобальные определения.
- 3.Операторы: суммирование и перемножение, дифференцирование и интегрирование, преобразование выражений.
- 4. Работа с матрицами. Арифметические операторы.
- 5. Работа с матрицами. Операторы преобразования массивов.
- 6. Стандартные средства MathCAD для решения задач линейной алгебры.
- 7. Построение графиков в MathCAD. 2D- и 3D-графики.
- 8. Построение графиков в MathCAD. Полярный график.
- 9. Построение графиков в MathCAD. Построение графиков кусочно-заданных функций.
- 10. Построение графиков в MathCAD. Использование ранжированных переменных.
- 11. Построение графиков в MathCAD. Трассировка и решение уравнений графически.
- 12. Встроенные функции для решения обыкновенных дифференциальных уравнений. Дифференциальные уравнения первого и второго порядка.
- 13. Системы дифференциальных уравнений. Метод Эйлера.
- 14. Системы дифференциальных уравнений.
- 15. Решение уравнений в частных производных.
- 16. Структура программы. Программы с ветвлениями.
- 17. Программирование циклических процессов. Рекурсивные вычисления.
- 18. Функции доступа к файлам. Файловое представление однородных числовых массивов.
- 19. Функции доступа к файлам. Файловое представление неоднородных массивов.

Задания для выполнения лабораторных работ

На лабораторных занятиях студенты выполняют задания по математическим вычислениям, соответствующие теме актуального лекционного занятия и аналогичные тем, которые содержатся в контрольной работе.

6.4. Фонд оценочных средств

Полный банк заданий для промежуточной аттестации по дисциплине, показатели, критерии, шкалы оценивания компетенций, методические материалы, определяющие процедуры оценивания образовательных результатов, приведены в учебно-методическом комплексе дисциплины.

7. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ УЧЕБНАЯ ЛИТЕРАТУРА 7.1. Основная учебная литература

- 1. Волк В.К. Программирование в системе MathCAD.: Учебное пособие. Курган: Изд-во Курганского гос. ун-та. 2004. 78.
- 2. Ракитин, В. И. Руководство по методам вычислений и приложения MATHCAD [Электронный ресурс] / В. И. Ракитин. Москва: ФИЗМАТЛИТ, 2005. 264 с. Доступ из ЭБС «znanium.com»

3. Решение задач вычислительной математики с использованием языка программирования пакета MathCad [Электронный ресурс] / Г.В. Трошина - Новосибирск: НГТУ, 2009. - 86 с. – Доступ из ЭБС «znanium.com»

7.2. Дополнительная учебная литература

- 1. Инженерные расчёты в Mathcad 15: Учебный курс. СПб.: Питер, 2011. 400 с.
- 2. Письменный Д.Т. Конспект лекций по высшей математике: полный курс / Д.Т. Письменный. 4-е изд. М.: Айрис-пресс, 2006. 608 с.
- 3. Моделирование процессов управления в интеллектуальных измерительных системах [Электронный ресурс] / Е.В. Капля, В.С. Кузеванов, В.П. Шевчук Москва: Физматлит, 2009. 512 с. Доступ из ЭБС «znanium.com»

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

1. Карпов Е.К. Методические указания к комплексу лабораторных и практических работ по курсу «Основы инженерных расчётов» // Е.К. Карпов. Курган: КГУ. 2017.-65 с.

9. РЕСУРСЫ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Официальный сайт фирмы-разработчика системы компьютерной алгебры MathCAD. http://www.ptc.com/engineering-math-software/mathcad
- 2. Образовательный математический сайт EXPonenta.ru. http://www.exponenta.ru/soft/Mathcad/Mathcad.asp
- 3. Официальный форум фирмы-разработчика MathCAD. https://www.ptcusercommunity.com/community/mathcad
 - 4. dist.kgsu.ru Система поддержки учебного процесса КГУ

10. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ

- 1. ЭБС «Лань»
- 2. ЭБС «Консультант студента»
- 3. 3 EC «Znanium.com»
- 4. «Гарант» справочно-правовая система

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение по реализации дисциплины осуществляется в соответствии с требованиями ФГОС ВО по данной образовательной программе.

12. ДЛЯ СТУДЕНТОВ, ОБУЧАЮЩИХСЯ С ИСПОЛЬЗОВАНИЕМ ДИСТАНЦИОННЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

При использовании электронного обучения и дистанционных образовательных технологий (далее ЭО и ДОТ) занятия полностью или частично проводятся в режиме онлайн. Объем дисциплины и распределение нагрузки по видам работ соответствует п. 4.1. Распределение баллов соответствует п. 6.2 либо может быть изменено в соответствии с решением кафедры, в случае перехода на ЭО и ДОТ в процессе обучения. Решение кафедры об используемых технологиях и системе оценивания достижений обучающихся принимается с учетом мнения ведущего преподавателя и доводится до сведения обучающихся.

Аннотация к рабочей программе дисциплины «Автоматизированные расчеты в технических системах»

образовательной программы высшего образования — программы бакалавриата

27.03.01 – Стандартизация и метрология Направленность:

Стандартизация, метрология и управление качеством

Трудоемкость дисциплины: 3 ЗЕ (108 академических часов)

Семестр: 5 (заочная форма обучения) Форма промежуточной аттестации: Зачет

Содержание дисциплины

компоненты Функциональные ДЛЯ автоматизации исследований технических объектов. Особенности проектирования и основные требования к автоматизированным системам. Принципы построения автоматизированных систем. Общая характеристика средств управления в автоматизированных основные построения системах, критерии выбора ЭВМ ДЛЯ автоматизированной системы.

Общая методика программного управления внешними устройствами и оценки их состояния. Технические средства обработки, хранения, отображения информации и выработки командных воздействий. Технические средства получения информации о состоянии объекта управления. Алгоритмы одноканальных и многоканальных измерений входных сигналов по готовности устройства измерения.

Работа Арифметические матрицами. операторы. Операторы преобразования массивов. Стандартные средства MathCAD для решения задач линейной алгебры. Построение графиков в MathCAD. 2D- и 3D-графики. кусочно-заданных Построение графиков функций. Использование ранжированных переменных. Встроенные функции для решения обыкновенных дифференциальных уравнений. Дифференциальные уравнения первого и второго порядка. Системы дифференциальных уравнений. Решение уравнений в частных производных. Программы с ветвлениями. Программирование циклических процессов. Рекурсивные вычисления. Моделирование непрерывных и нелинейных динамических систем.

Назначение и состав системы Matlab. Основы работы в Matlab. Встроенные функции для Арифметические вычисления, работа с массивами, построение и редактирование графиков. Работа с М-файлами. Основы программирования в Matlab. Работа в Simulink. Построение блок-схем. Выделение объектов. Операции с блоками.

ЛИСТ

регистрации изменений (дополнений) в рабочую программу учебной дисциплины

«Автоматизированные расчеты в технических системах»

Изменения / дополнения в рабочую программу на 20 / 20 учебный год:
Ответственный преподаватель/ Ф.И.О. /
Изменения утверждены на заседании кафедры «»20 г., Протокол №
Заведующий кафедрой «»20 г.
Изменения / дополнения в рабочую программу на 20 / 20 учебный год:
Ответственный преподаватель/ Ф.И.О. /
Изменения утверждены на заседании кафедры «»20 г., Протокол №
Заведующий кафедрой «»20 г.