Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» (КГУ)

Кафедра «Цифровая энергетика»

		УТВЕРЖДАЮ:
		Первый проректор
		/Т.Р. Змызгова/
«	>>	2025 г.

Рабочая программа учебной дисциплины

Автоматизация и цифровые технологии в электроэнергетике (наименование дисциплины)

образовательной программы высшего образования — программы магистратуры

13.04.02 - Электроэнергетика и электротехника

Направленность: **Цифровые технологии в электроэнергетике**

Формы обучения: заочная

Рабочая программа дисциплины «Автоматизация и цифровые технологии в электроэнергетике» составлена в соответствии с учебными планами по программе магистратуры Электроэнергетика и электротехника (Цифровые технологии в электроэнергетике), утвержденными:

- для заочной формы обучения «27» июня 2025года.

Рабочая программа дисциплины одобрена на заседании кафедры «Цифровая энергетика» «01» июля 2025 года, протокол № 18.

Рабочую программу составил ст. преподаватель

Д.Н. Шестаков

Согласовано:

Заведующий кафедрой «Цифровая энергетика»

Ж.В. Нечеухина

Руководитель программы магистратуры

В.И. Мошкин

Специалист по учебно-методической работе учебно-методического отдела

Г.В. Казанкова

Начальник управления образовательной деятельности

И.В. Григоренко

1. ОБЪЕМ ДИСЦИПЛИНЫ

Всего: 6 зачетных единицы (216 академических часа)

Заочная форма обучения

Drug vyrobyrov pobozyv	На всю дис-	Семестр
Вид учебной работы	циплину	3
Аудиторные занятия (контактная работа с преподавате-		
лем), всего часов	12	12
в том числе:		
Лекции	4	4
Лабораторные работы	4	4
Практические занятия	4	4
Самостоятельная работа, всего часов	204	204
в том числе:	204	204
Курсовая работа	36	36
Подготовка к экзамену	27	27
Другие виды самостоятельной работы	141	141
(самостоятельное изучение тем (разделов) дисциплины)	141	141
Вид промежуточной аттестации	Экзамен	Экзамен
Общая трудоемкость дисциплины и трудоемкость по се-	216	216
местрам, часов	210	210

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Автоматизация и цифровые технологии в электроэнергетике» относится к части формируемой участниками образовательных отношений Блока 1.

Освоение обучающимися дисциплины «Автоматизация и цифровые технологии в электроэнергетике» опирается на знания, умения, навыки и компетенции, приобретенные в результате освоения предшествующих дисциплин:

- Современные технологии в области электроэнергетики и электротехники.
- Моделирование в электроэнергетике.

Результаты обучения по дисциплине необходимы для выполнения разделов выпускной квалификационной работы.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Целью освоения дисциплины «Автоматизация и цифровые технологии в электроэнергетике» является получение знаний, умений и навыков по изучению основ и практических приёмов программирования цифровых устройств с использованием прикладных инструментальных систем, новых технологий и техники в энергетике.

Задачами освоения дисциплины являются:

 овладение основными методами и средствами автоматизированных систем управления в энергетике;

- изучение особенностей принятия управленческих решений на всех этапах его жизненного цикла систем управления в энергетике;
- изучение теории и практики расчетов параметров устройств защиты и автоматики электроэнергетических систем.

Компетенции, формируемые в результате освоения дисциплины:

- способен управлять проектом на всех этапах его жизненного цикла (УК-2);
- способен применять методы и средства автоматизированных систем управления в энергетике (ПК-3);
- способен выполнять расчеты параметров устройств защиты и автоматики электроэнергетических систем (ПК-4).

Индикаторы и дескрипторы части соответствующей компетенции, формируемой в процессе изучения дисциплины «Автоматизация и цифровые технологии в электроэнергетике», оцениваются при помощи оценочных средств.

Планируемые результаты обучения по дисциплине «Автоматизация и цифровые технологии в электроэнергетике», индикаторы достижения компетенции УК-2, ПК-3, ПК-4, перечень оценочных средств

No	Код индика-	Наименование инди-	Код планируе-	Планируемые ре-	Наименование
Π/Π	тора дости-	катора достижения	мого результа-	зультаты обучения	оценочных
	жения компе- тенции	компетенции	та обучения		средств
1.	ИД-1 _{УК-2}	Знать: методы управления проектами на всех этапах его жизненного цикла	3 (ИД-1 _{УК-2})	Знает: методы управления проектами на всех этапах его жизненного цикла	Вопросы теста
2.	ИД-2 _{УК-2}	Уметь: осуществлять управление проектами на всех этапах его жизненного цикла	У (ИД-2 _{УК-2})	Умеет: осуществлять управление проектами на всех этапах его жизненного цикла	Темы дискуссии
3.	ИД-3 _{УК-2}	Владеть: приемами управления проектами на всех этапах его жизненного цикла	В (ИД-3 _{УК-2})	Владеет: приемами управления проектами на всех этапах его жизненного цикла	Вопросы для сдачи экзамена
4.	ИД-1 _{ПК-3}	Знать: методы и средства автоматизированных систем управления в энергетике	3 (ИД-1 _{ПК-3})	Знает: методы и средства автоматизированных систем управления в энергетике	Вопросы теста
5.	ИД-2 _{ПК-3}	Уметь: применять методы и средства автоматизированных систем управления в энергетике	У (ИД-2 _{ПК-3})	Умеет: применять методы и средства автоматизированных систем управления в энергетике	Темы дискуссии
6.	ИД-3 _{ПК-3}	Владеть: методами и средствами автомати-	В (ИД-3 _{ПК-3})	Владеет: методами и средствами автомати-	Вопросы для

		зированных систем управления в энергети- ке		зированных систем управления в энерге- тике	сдачи экзамена
7.	ИД-1 _{ПК-4}	Знать: методы расчетов параметров устройств защиты и автоматики электроэнергетических систем	3 (ИД-1 _{ПК-4})	Знает: методы расчетов параметров устройств защиты и автоматики электро-энергетических систем	Вопросы теста
8.	ИД-2 _{ПК-4}	Уметь: выполнять расчеты параметров устройств защиты и автоматики электроэнергетических систем	У (ИД-2 _{ПК-4})	Умеет: выполнять расчеты параметров устройств защиты и автоматики электроэнергетических систем	Проведение расчетов при выполнении курсовой работы
9.	ИД-3 _{ПК-4}	Владеть: приемами расчета параметров устройств защиты и автоматики электроэнергетических систем	В (ИД-3 _{ПК-4})	Владеет: приемами расчета параметров устройств защиты и автоматики электро-энергетических систем	Вопросы для защиты курсовой работы

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1 Учебно-тематический план

Шифр раздела,	Наименование раздела,	Количество часов по видам учебных занятий Заочная форма		
темы дисци- плины	темы дисциплины	Лекции	Практ. занятия	Лабор. работы
P1	Введение. Основные понятия, термины и определения.	0,2	_	-
P2	Аппаратная и программная части компьютерных устройств	0,3	_	Ι
Р3	Устройство микропроцессорных устройств релейной защиты.	_	1	2
P4	Микропроцессорные ком- плектные устройства релей- ной защиты, управления и ав- томатики.	-	1	-
P5	Компьютерные сети. Принципы разработки программного обеспечения	0,5	-	-
P6	Интегрированные системы защиты и управления под- станциями.	-	1	_
P7	Производственные системы и их развитие	0,5	_	-
P8	Получение и переработка технологической информа-	0,5	_	-

	ции			
Р9	Цифровая регистрация и анализ аварийных процессов в электроэнергетических системах.	-	1	2
P10	Алгоритмы функционирования и управления технологических объектов	0,5	-	_
P11	Технические средства авто- матического управления обо- рудованием	0,5	_	_
P12	Локальный уровень управления технологическим оборудованием	0,5	_	_
P13	Программирование систем управления оборудованием	0,5	_	_
	Итого:	4	4	4

4.2. Содержание лекционных занятий

ТЕМА 1. Введение. Основные понятия, термины и определения.

Основные понятия и определения. Назначение, характеристика и структура современных автоматизированных систем управления технологическими процессами (АСУ ТП). Экономические и социальные аспекты автоматизации.

Тема 2. Аппаратная и программная части компьютерных устройств.

Классификация компьютерных устройств. Принципы работы комплектующих устройств. Методы настройки и диагностики комплектующих устройств. Основные понятия и классификация программного обеспечения. Системное ПО. Прикладное ПО. Сетевое ПО. Среды разработки программного обеспечения.

Тема 3. Устройство микропроцессорных устройств релейной защиты.

Общая структура и конструктивное исполнение микропроцессорных устройств релейной защиты. Модули аналоговых и цифровых (логических) входов, модули выходных реле. Модуль центрального процессора (аналого-цифровой преобразователь, память, микропроцессор). Внутренний источник питания. Система самодиагностики микропроцессорного устройства релейной защиты.

Tema 4. Микропроцессорные комплектные устройства релейной защиты, управления и автоматики.

Многофункциональный микропроцессорный блок БМРЗ. Микропроцессорные комплектные устройства релейной защиты и автоматики серии SPAC 800. Микропроцессорные интегральное устройство релейной защиты трансформатора SPAD346C. Комбинированный микропроцессорный терминал релейной защиты «Сириус-Т». Микропроцессорное устройство релейной защиты трансформатора типа PC83-ДТ2.

Тема 5. Компьютерные сети. Принципы разработки программного обеспечения.

Принципы построения сетей. Проектирование компьютерных сетей. Настройка сетей. Диагностика и отладка сетей. Проблемы разработки сложных программных систем. Жизненный

цикл ПО. Процессы разработки ПО. Архитектура ПО. Принципы создания пользовательского интерфейса. Управление разработкой ПО.

Тема 6. Интегрированные системы защиты и управления подстанциями.

Интегрированные системы оперативного и автоматического управления подстанцией, функции релейной защиты. Автоматическое регулирование напряжения трансформаторов. Управление батареями конденсаторов.

Тема 7. Производственные системы и их развитие.

Массовое, серийное и индивидуальное производство. Непрерывные и дискретные производства. Материальные и информационные потоки в производственных системах. Структура производственных систем (ПС) и уровни автоматизации. Планирование, диспетчеризация, оперативное управление. Краткая характеристика ГПС АСВ и АСК. Проблемы создания ГПС

Тема 8. Получение и переработка технологической информации.

Основные понятия: информация, мера измерения, количество информации. Виды и формы информационных сигналов. Квантование сигналов в цифровых системах управления. Передача и защита информации от помех.

Tema 9. Цифровая регистрация и анализ аварийных процессов в электроэнергетических системах.

Основные модули и конструктивное исполнение регистраторов аварийных событий. Пусковые параметры устройств регистрации аварийных событий. Цифровые осциллографы: АУРА, Черный ящик, HEBA-PAC, терминалы БЭ2702.

Tema 10. Алгоритмы функционирования и управления технологических объектов.

Аналитические методы получения математических моделей технологических объектов. Экспериментальные методы получения моделей технологических объектов. Формализация дискретных последовательностей операций (технологических циклов). Классификация алгоритмов управления технологическими объектами: стабилизация, программно - следящее управление, оптимальное управление. Алгоритмы программно - логического управления последовательностью операций. Элементы теории логических устройств автоматики. Синтез комбинационных автоматов. Синтез последовательностных автоматов.

Тема 11. Технические средства автоматического управления оборудованием.

Характеристика основных типов микропроцессоров (МП) и управляющих ЭВМ. Архитектура управляющей ЭВМ. Организация обмена данными в МП и управляющих ЭВМ. Структура и основные характеристики устройств сопряжения управляющей ЭВМ с объектом.

Тема 12. Локальный уровень управления технологическим оборудованием.

Сущность системного подхода. Понятие система. Основные свойства системы. Материальные и абстрактные системы. Два основных класса искусственных систем: технические и организационно-экономические. Малые, сложные, сверхсложные и суперсистемы. Понятие связи. Структура объекта. Сложные технические и организационно-экономические системы. Системный подход к изучению сложных объектов. Системный анализ и синтез системы.

Тема 13. Программирование систем управления оборудованием.

Этапы и стадии разработки АИУС. Жизненный цикл: предпроектное исследование; проектирование системы; создание системы; ввод системы в эксплуатацию; вывод системы на проектные мощности с целью достижения заданных показателей функционирования; эксплуатация системы — основной жизненный период; окончание работы системы. Основные проблемы, ре-

шаемые при разработке ИУС. Перспективные информационные технологии проектирования ИУС. Компьютерное моделирование систем автоматического регулирования.

4.3 Содержание практических занятий

Шифр раздела, темы дисци-	Наименование раздела, темы дисциплины	Наименование и содержание практического занятия	Трудоемкость, часы Заочная форма
Р3	Устройство микропроцессорных устройств релейной защиты.	Выбор необходимого количества аналоговых и цифровых (логических) входов, выходных реле микропроцессорных	1
		устройств. Разработка логической схемы цифровых устройств релейной защиты и выбор напряжения питания вторичных цепей.	
P4	Микропроцессорные комплектные устройства релейной защиты, управления и автоматики.	Выбор параметров срабатывания цифровых токовых защит блока БМРЗ Расчет параметров микропроцессорного терминала релейной защиты «Сириус-Т» Выбор параметров срабатывания микропроцессорного устройства релейной защиты трансформатора типа РС83-ДТ2 Выбор характеристик и уставок цифровых токовых защит серий SPACOM и RE_500	1
P6	Интегрированные системы защиты и управления подстанциями.	Выбор параметров регуляторов напряжения трансформаторов.	1
P9	Цифровая регистрация и анализ аварийных процессов в электро-энергетических системах.	Выбор пусковых параметров устройств регистрации аварийных событий. Анализ аварийных процессов и определение места повреждения ЛЭП по параметрам аварийного режима.	1
		Итого:	4

4.4 Наименование лабораторных работ.

Шифр раздела,	Наименование раздела,	Наименование и содержание	Трудоемкость, часы
темы дисци- плины	темы дисциплины	лабораторных работ	Заочная форма
Р3	Устройство микропроцессорных устройств релейной защиты.	Изучение цифровых реле на персональном компьютере (Симулятор ТЭМП 2501).	2

P9	Цифровая регистрация	Анализ аварийного процесса по осцил-	2
	и анализ аварийных	лограмме регистратора аварийных со-	
	процессов в электро-	бытий АУРА.	
	энергетических систе-		
	мах.		
		Итого:	4

4.5. Курсовая работа

(для заочной формы обучения)

В курсовой работе по теме «Оснащение подстанции цифровыми устройствами автоматизации и защиты» обучающиеся выполняют:

- 1) Обоснование необходимости установки на подстанции устройств автоматизации и защиты;
 - 2) Обоснованный выбор типа устройств автоматизации и защиты;
 - 3) Расчет параметров срабатывания защит и устройств автоматизации;
 - 4) Проверку чувствительности выбранных защит.

Варианты для выполнения курсовой работы выбираются согласно списочному номеру.

Требования к оформлению курсовой работы.

Курсовая работа оформляется аккуратно, компьютерный набор шрифт - Times New Roman кегль 14 или 12. Она должна содержать: титульный лист установленного образца, содержание, текст задания, решенные задания и список источников. На листе формата А1 выполняется чертеж схемы установки цифровых устройств автоматизации и защиты на подстанции. Составляется спецификация на примененную аппаратуру.

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При прослушивании лекций рекомендуется в конспекте отмечать все важные моменты, на которых заостряет внимание преподаватель, в частности те, которые направлены на качественное выполнение соответствующей практической работы.

Преподавателем запланировано использование при чтении лекций технологии учебной дискуссии. Поэтому рекомендуется фиксировать для себя интересные моменты с целью их активного обсуждения на дискуссии в конце лекции.

Залогом качественного выполнения лабораторных работ является самостоятельная подготовка к ним накануне путем повторения материалов лекций. Рекомендуется подготовить вопросы по неясным моментам и обсудить их с преподавателем в начале лабораторной работы.

Преподавателем запланировано применение на лабораторных занятиях технологий развивающейся кооперации, коллективного взаимодействия, разбора конкретных ситуаций. Поэтому приветствуется групповой метод выполнения лабораторных работ и защиты отчетов, а также взаимооценка и обсуждение результатов выполнения лабораторных работ.

Практические занятия по дисциплине посвящены решению задач.

Выполнение самостоятельной работы подразумевает самостоятельное изучение разделов дисциплины, подготовку к лабораторным занятиям, к практическим занятиям, выполнение курсовой работы, подготовку к экзамену.

Рекомендуемая трудоемкость самостоятельной работы представлена в таблице:

Рекомендуемый режим самостоятельной работы

			Трудоемкость,
Ши	Виды самостоятельной работы обучающихся	Наименование и содержание	часы
фр		Паименование и содержание	Заочная
			форма
C1	Углубленное изучение	С1.1. Составные блоки микропроцес-	73
	разделов, тем дисциплины	сорных устройств релейной защиты.	
	лекционного курса	С1.2. Применение цифровых филь-	
		тров симметричных составляющих.	
		С1.3.Назначение, характеристика и	
		структура современных автоматизи-	
		рованных систем управления техно-	
		логическими процессами (АСУ ТП).	
		С1.4. Надежность микропроцессор-	
		ных устройств релейной защиты.	
		С1.5. Рекомендации по применению	
		микропроцессорных устройств релей-	
		ной защиты.	
		С1.6.Методы настройки и диагности-	
		ки комплектующих устройств.	
		С1.7.Системное ПО. Прикладное ПО.	
		Сетевое ПО. Среды разработки про-	
		граммного обеспечения.	
		С1.8. Выбор характеристик и уставок	
		микропроцессорных устройств релей-	
		ной защиты различного электротехни-	
G2	11	ческого оборудования.	CO
C2	Изучение разделов, тем	С2.1. Проблема электромагнитных	60
	дисциплины не вошедших	воздействий на микропроцессорные	
	в лекционный курс	устройства релейной защиты.	
		С2.2. Технико-экономическое обос-	
		нование внедрения микропроцессорных устройства релейной защиты.	
		7 1	
		С2.3.Краткая характеристика ГПС ACB и ACK. Проблемы создания	
		ГПС	
		С2.4.Синтез комбинационных авто-	
		·	
		матов. Синтез последовательностных	
		автоматов.	
		С2.5. Опыт эксплуатации микропроцессорных устройства релейной защи-	
		ты.	
C3	Подготовка к аудиторным	СЗ.1. Подготовка к практическим за-	4
CJ	тюдготовка к аудиторным	Сэл. подготовка к практическим за-	

	(/	
	занятиям (практические и	нятиям по конспектам (с помощью	
	лабораторные занятия,	лекционного материала), учебной ли-	
	текущий и рубежный кон-	тературе и с помощью электронных	
	троль)	ресурсов (контролируются конспек-	
		ты, черновики, таблицы для занесе-	
		ния экспериментальных данных и	
		др.) (по 2 ч. на каждое занятие).	
		С3.2. Подготовка и оформление от-	4
		четов по результатам лабораторных	
		работ (с выполнением необходимых	
		расчетов и графических построений),	
		поиск, анализ, структурирование ин-	
		формации по лабораторным работам	
		(в т.ч. с использованием интернет-	
		ресурсов) (по 2 ч. на каждое занятие).	
C4	Выполнение курсовых,	С4.1. Выполнение курсовой работы	36
	домашних, расчетных,	по оснащению подстанции цифро-	
	расчетно-графических ра-	выми устройствами автоматизации и	
	бот, курсовых работ, про-	защиты.	
	ектов и т.д.		
C5	Подготовка к промежу-	С5.1. Подготовка к экзамену.	27
	точной аттестации по	·	
	дисциплине (зачет, экза-		
	мен)		
C6	Прочие виды самостоя-	Не предусмотрено	_
	тельной работы		
		Итого:	204

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

6.1. Перечень оценочных средств

- 1. Курсовая работа.
- 2. Отчеты обучающихся по лабораторным работам.
- 3. Банк задач для практических занятий.
- 4. Перечень вопросов к экзамену.

6.2. Процедура оценивания результатов освоения дисциплины

Экзамен проводится по билетам. Экзаменационный билет состоит из 2 вопросов, на которые обучающийся дает развернутый ответ. Время, отводимое обучающемуся на экзаменационный билет, составляет 0,5 астрономического часа.

Результаты экзамена заносятся преподавателем в экзаменационную ведомость, которая сдается в организационный отдел института в день экзамена, а также выставляются в зачетную книжку обучающегося.

6.3. Примеры оценочных средств для экзамена

Примерный перечень вопросов для подготовки к экзамену

- 1. Классификация компьютерных устройств.
- 2. Принципы работы комплектующих устройств.
- 3. Методы настройки и диагностики комплектующих устройств.
- 4. Основные понятия и классификация программного обеспечения.
- 5. Системное ПО.
- 6. Прикладное ПО.
- 7. Сетевое ПО.
- 8. Среды разработки программного обеспечения.
- 9. Что такое информационная технология?
- 10. Что является целью информационной технологии?
- 11. Что такое открытая информационная система?
- 12. По каким признакам классифицируют информационные технологии?
- 13. Что такое передаточная функция?
- 14. Для чего предназначены информационные модели?
- 15. Что такое автоматизированная система управления?
- 16. Что такое алгоритм управления?
- 17. Что такое управляемая величина?
- 18. Что такое фазовая частотная характеристика?
- 19. Что такое амплитудная частотная характеристика?
- 20. Максимальный порядок дифференциального уравнения типовых звеньев.
- 21. Укажите, какой параметр типового звена определяет величину выходного сигнала.
- 22. Как называется график переходного процесса выходной координаты звена, если на его вход подается единичное ступенчатое воздействие?
- 23. Какие свойства автоматической системы принято рассматривать при оценке ее качества?
- 24. Какие показатели качества относятся к частотным показателям?
- 25. Какие показатели качества относятся к корневым показателям?
- 22. Какие еще существуют показатели качества кроме прямых, частотных и корневых?
- 26. Какие вы знаете свойства алгоритмов.
- 27. Какая форма представления информации непрерывная или дискретная приемлема для компьютеров и почему?
- 28. Что входит в состав обеспечивающих подсистем?
- 29. Каковы основные стадии и этапы разработки информационной системы?
- 30. Дайте понятие компьютерной сети.
- 31. Что понимается под термином «локальная сеть»?
- 32. Какие свойства автоматической системы принято рассматривать при оценке ее качества?
- 33. В чем состоят основные требования к техническим средствам АИУС?
- 34. Что относится к техническим средствам АИУС?
- 35. Для чего служат устройства передачи данных?
- 36. Что лежит в основе информационной системы?
- 37. На что ориентированы информационные системы?
- 38. Что является неотъемлемой частью любой информационной системы?

- 39. Что является традиционным методом организации информационных систем?
- 40. На что подразделяются информационные системы по масштабу?
- 41. Что не входит в состав информационных систем?
- 42. В какой системе часть операций управления выполняется машиной, а другая часть человеком? Какой принцип ее действия.
- 43. Как называется управление, переводящее объект из начального в конечное состояние за ограниченный интервал времени? Какой принцип ее действия.
- 44. В чем разница между циклическим и адресным опросом датчиков?
- 45. Структура микропроцессорных устройств релейной защиты.
- 46. Каковы основные причины применения микропроцессорных (цифровых) зашит.
- 47. Конструктивное исполнение микропроцессорных устройств релейной защиты.
- 48. Что является датчиками для микропроцессорных защит.
- 49. Модуль аналоговых входов микропроцессорных устройств. Назначение и конструктивное исполнение.
- 50. Модуль цифровых (логических) входов микропроцессорных устройств. Назначение и конструктивное исполнение.
- 51. Модуль выходных реле микропроцессорных устройств. Назначение и конструктивное исполнение.
- 52. Структура модуля центрального процессора микропроцессорных устройств.
- 53. Аналого-цифровой преобразователь. Назначение и конструктивное исполнение.
- 55. Структура памяти микропроцессорных устройств.
- 56. Требования к внешнему и внутреннему источникам питания микропроцессорных устройств.
- 57. Система самодиагностики микропроцессорного устройства релейной защиты.
- 58. В чем существенное преимущество микропроцессорной защиты от аналогичной защиты, выполненной на электромеханических реле.
- 59. Какие недостатки имеет микропроцессорная защита.
- 60. Как работает токовая микропроцессорная защита.

6.4. Фонд оценочных средств

Полный банк заданий для текущего контроля и промежуточной аттестации по дисциплине, показатели, критерии, шкалы оценивания компетенций, методические материалы, определяющие процедуры оценивания образовательных результатов, приведены в учебно-методическом комплексе дисциплины.

7. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ УЧЕБНАЯ ЛИТЕРАТУРА

7.1. Основная литература

1. Петренко, Ю.Н. Программное управление технологическими комплексами в энергетике : учеб, пособие / Ю.Н. Петренко, С.О. Новиков, А.А. Гончаров. Минск: Выш. шк., 2013. 407 с.: ил. - 15ВК 978-985-06-2227-3. - Режим доступа: https://e.lanbook.com/book/65588.

- 2. Андык, В. С. Автоматизированные системы управления технологическими процессами на ТЭС: учебник / В. С. Андык. Томск: ТПУ, 2016. 408 с. ISBN 978-5-4387-0684-7. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/107714.
- 3. Дадаян, Л. Г. Автоматизированные системы управления технологическими процессами: учебное пособие / Л. Г. Дадаян. Уфа: УГНТУ, 2018. 241 с. ISBN 978-5-7831-1676-6. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/166886.

7.2. Дополнительная литература

- 1. Втюрин, В. А. Автоматизированные системы управления технологическими процессами. Программно-технические комплексы: учебное пособие / В. А. Втюрин. Санкт-Петербург: СПбГЛТУ, 2007. 232 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/60870.
- 2. Плетнев Г.П. Автоматизированное управление объектами тепловых электростанций: Учеб. пособие. –М.: Энергоиздат. 1991. 362 с.
- 3. Ожиганов Ю.В., Иванов Ю.П. Автоматизированные системы управления технологическими процессами энергоблоков: Учеб. пособие. Л.: СЗПИ, 1988. 74 с.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

- 1. Релейная защита трансформаторов с использованием микропроцессорного устройства РС83-ДТ2. Методические указания для дипломного проектирования защит трансформатора раздела «Релейная защита» для студентов направления «Электроснабжение». Составили Шестаков Д.Н., Помялов С.Ю., Курган.: Кафедра «Энергетика и технология металлов», 2010г.— 44с.: ил. Доступ из ЭБС КГУ.
- 2. Релейная защита трансформаторов с использованием микропроцессорного устройства «Сириус-Т». Методические указания для дипломного проектирования защит трансформатора раздела «Релейная защита» для студентов направления «Электроснабжение». Составили Шестаков Д.Н., Помялов С.Ю., Курган.: Кафедра «Энергетика и технология металлов», 2011г.— 56с.: ил. Доступ из ЭБС КГУ.

9. РЕСУРСЫ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

N₂	Интернет-ресурс	Краткое описание
1	http://dspace.kgsu.ru/xmlui/	Электронная библиотека КГУ
2	http://znanium.com/	Электронно-библиотечная система Znanium.com
3	http://www.studentlibrary.ru/	Студенческая электронная библиотека «КОН-

	pages/technical.html	СУЛЬТАНТ СТУДЕНТА»
4	http://electrolibrary.info/	Электронная электротехническая библиотека
5	http://www.mtrele.ru/	Сайт ООО «НТЦ «Механотроника» микропро-
		цессорные устройства релейной защиты.
6	http://www.rele.ru/	Сайт ООО «Реле и Автоматика» – разработчи-
		ка и производителя промышленных реле,
		устройств автоматики и низковольтного обору-
		дования.
7	http://rzasystems.ru/	Сайт ООО «РЗА СИСТЕМЗ» – разработчика и
		производителя современных устройств релей-
		ной защиты и автоматики.
8	http://www.tavrida.ru/	Сайт научно-производственной компании «Та-
		врида Электрик»
9	http://www.edu.ru/	Федеральный портал «Российское образова-
	_	ние»

10. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ

- 1. ЭБС «Лань»
- 2. ЭБС «Консультант студента»
- 3. ЭБС «Znanium.com»: http://znanium.com
- 4. «Гарант» справочно-правовая система
- 5. Система дистанционного обучения «Moodle».
- 6. Платформа для собраний, чатов, звонков и совместной работы Microsoft Teams.
- 7. Программно-технический комплекс «Регистратор аварийных событий AVPA».

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение по реализации дисциплины осуществляется в соответствии с требованиями $\Phi\Gamma$ OC BO по данной образовательной программе.

12. ДЛЯ ОБУЧАЮЩИХСЯ С ИСПОЛЬЗОВАНИЕМ ДИСТАНЦИОННЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

При использовании электронного обучения и дистанционных образовательных технологий (далее ЭО и ДОТ) занятия полностью или частично проводятся в режиме онлайн. Объем дисциплины и распределение нагрузки по видам работ соответствует п. 4.1. Решение кафедры об используемых технологиях и системе оценивания достижений обучающихся принимается с учетом мнения ведущего преподавателя и доводится до обучающихся.

Аннотация к рабочей программе дисциплины **«Автоматизация и цифровые технологии в электроэнергетике»**

образовательной программы высшего образования – программы магистратуры 13.04.02 - Электроэнергетика и электротехника

Направленность: **Цифровые технологии в электроэнергетике**

Трудоемкость дисциплины: 6 ЗЕ (216 академических часа)

Семестр: 3 (заочная форма обучения)

Форма промежуточной аттестации: экзамен

Содержание дисциплины

Дисциплина предусматривает изучение и практическое освоение элементной базы, технологий разработки и применения цифровых устройств и автоматизированных систем. Рассматриваются основы и практические приёмы программирования цифровых устройств с использованием прикладных инструментальных систем. Принципы использования цифровой техники в автоматизации и защите в системах электроснабжения, автоматизированное управление электроэнергетическими системами различных напряжений.

ЛИСТ

регистрации изменений (дополнений) в рабочую программу учебной дисциплины

«Автоматизация и цифровые технологии в электроэнергетике»

Изменения / дополнения в рабочую программу на 20 / 20 учебный год:
Ответственный преподаватель/ Ф.И.О. /
Изменения утверждены на заседании кафедры «»20 г., Протокол №
Заведующий кафедрой «»20 г.
Изменения / дополнения в рабочую программу на 20 / 20 учебный год:
Ответственный преподаватель/ Ф.И.О. /
Изменения утверждены на заседании кафедры «»20 г., Протокол №
Заведующий кафедрой «»20 г.