Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» (КГУ)

Кафедра «Цифровая энергетика »

		УТВЕРЖДАЮ:
		Первый проректор
		/Т.Р.Змызгова/
«	>>	2024 г.

Рабочая программа учебной дисциплины

Моделирование в теплоэнергетике и теплотехнике

(НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ)

образовательной программы высшего образования – программы бакалавриата 13.03.01 - Теплоэнергетика и теплотехника

Направленность: Энергообеспечение предприятий

Формы обучения: заочная.

Рабочая программа дисциплины «Моделирование в теплоэнергетике и теплотехнике» составлена в соответствии с учебными планами по программе бакалавриата Теплоэнергетика и теплотехника (Энергообеспечение предприятий), утвержденными:

- для заочной формы обучения «<u>28</u>» <u>июня</u> 2024 года.

Рабочая программа дисциплины одобрена на заседании кафедры «Цифровая энергетика» «06» сентября 2024 года, протокол № 1

Рабочую программу составил:

доцент С.В. Титов

Согласовано:

Заведующий кафедрой «Цифровая энергетика»

В.И. Мошкин

Специалист по учебно-методической работе учебно-методического отдела

Г.В. Казанкова

Начальник Управления Образовательной деятельности

И.В.Григоренко

1. ОБЪЕМ ДИСЦИПЛИНЫ

Всего: 3 зачетных единицы трудоемкости (108 академических часа)

Заочная форма обучения

Вид учебной работы	На всю	Семестр
	дисциплину	5
Аудиторные занятия (контактная работа с	6	6
преподавателем), всего часов		
в том числе:		
Лекции	2	2
Лабораторные работы	4	4
Практические занятия	-	-
Самостоятельная работа, всего часов	102	102
в том числе:	102	102
Подготовка контрольной работы	18	18
Подготовка к зачету	18	18
Другие виды самостоятельной работы		
(самостоятельное изучение тем (разделов)	66	66
дисциплины)		
Вид промежуточной аттестации	зачет	зачет
Общая трудоемкость дисциплины и трудоемкость	108	108
по семестрам, часов		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Моделирование в теплоэнергетике и теплотехнике» относится к части, формируемой участниками образовательных отношений Блока 1.(Б1.В.05)

Изучение дисциплины базируется на знаниях, умениях, навыках, приобретенных обучающимися при изучении следующих дисциплин:

- Физика;

Информатика;

Термодинамика;

Теплообменные аппараты.

Результаты обучения по дисциплине необходимы для изучения дисциплины «Котельные установки и парогенераторы».

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Целью изучения дисциплины «Моделирование в теплоэнергетике и теплотехнике» является освоение методов анализа и моделирования тепловых полей.

Задачами дисциплины являются:

- познакомить обучающихся с основными методами анализа стационарных и нестационарных тепловых полей;
- дать информацию о путях повышения эффективности анализа тепловых полей с помощью компьютерного моделирования.

Компетенции, формируемые в результате освоения дисциплины: -способность к проведению моделирования процессов в теплоэнергетике (ПК-9).

Планируемые результаты обучения по дисциплине «Моделирование в теплоэнергетике и теплотехнике », индикаторы достижения компетенций ПК-9, перечень оценочных средств

$N_{\underline{0}}$	Код	Наименование	Код	Планируемые	Наименование
Π/Π	индикатора	индикатора	планируемого	результаты	оценочных
	достижения	достижения	результата	обучения	средств
	компетенции	компетенции	обучения		
1.	ИД-1 _{ПК-9}	Знать: новое	3 (ИД-1 _{ПК-9})	Знает:	Тестовые
		современное		современные	вопросы
		программное		компьютерные	
		обеспечение,		технологии,	
		позволяющее		позволяющие	
		реализовывать		разрабатывать	

моделирование теплотехническ ое оборудование в короткие сроки проведения экспериментов. 2. ИД-2 _{ПК-9} Уметь: выявлять основные технические параметры, позволяющие порости	
сокращающее сроки проведения экспериментов. 2. ИД-2 _{ПК-9} Уметь: выявлять основные технические параметры, позволяющие	
сроки проведения экспериментов. 2. ИД-2 _{ПК-9} Уметь: выявлять основные технические параметры, позволяющие	
2. ИД-2 _{ПК-9} Уметь: выявлять основные технические параметры, параметры У (ИД-2 _{ПК-9}) Умеет: выявлять необходимые вопросы параметры, позволяющие	
2. ИД-2 _{ПК-9} Уметь: выявлять основные технические параметры, позволяющие	
основные необходимые вопросы параметры, позволяющие	
технические параметры, позволяющие	
параметры позволяющие	
таппотаунинаског	
теплотехническог провести	
о эксперимента, эксперимент и	
определять получить	
граничные результаты,	
условия и приближенные к	
возможность реальным.	
моделирования	
конкретными	
программными	
продуктами с	
соблюдением	
необходимой	
методики	
3. ИД-3 _{ПК-9} Владеть: В (ИД-3 _{ПК-9}) Владеет: Вопросы д	ЛЯ
методикой методами сдачи зачета	
моделирования качественного	
различных типов моделирования	
тепловых поле тепловых	
процессов для	
различных	
технологий.	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Учебно-тематический план

Заочная форма обучения

Номер	Наименование раздела,	Количество часов контактной работы с преподавателем		
раздела, темы	темы	Лекции	Практич. занятия	Лабораторн ые работы
1	Введение	-	-	-
2	Создание и импорт геометрии.	0,5	-	-
3	Моделирование стационарных тепловых полей.	0,5	-	2
4	Особенности нестационарных тепловых полей.	0,5	-	-
5	Моделирование нестационарных тепловых полей.	0	-	2
6	Дополнительные возможности ПО Elcut.	0,5	-	-

Всего: 2 - 4			2	-	4
------------------	--	--	---	---	---

4.2. Содержание лекционных занятий

Тема 1. Введение

Область использования моделирования в теплоэнергетики. Особенности, граничные условия и преимущества моделирование. Программное обеспечение, применяемое для моделирования тепловых полей.

Тема 2. Создание и импорт геометрии

Анализ поставленной задачи по моделированию. Определение типа задачи. Создание задачи. Интерфейс программного обеспечения.

Тема 3. Моделирование стационарных тепловых полей..

Этапы моделирования поставленной задачи, создание геометрической модели. Физические свойства. Связи модели. Получение и анализ результатов моделирования.

Тема 4. Особенности нестационарных тепловых полей.

Отличие задания характеристик нестационарного поля. Установка временных промежутков моделирования.

Тема 5 Свойства нестационарных тепловых полей.

Этапы моделирования нестационарного поля. Отличие функций моделирования от стационарного поля. Получение и анализ результатов моделирования. Дополнительные временные возможности анализа при моделировании нестационарного теплового поля

Тема 6. Дополнительные возможности ПО Elcut. Возможность моделирования сложных термомеханических полей и напряженного состояния. Использование дифференциальных калькуляторов. Связь ПО Elcut с другими программными продуктами CAD систем.

4.3 Лабораторные занятия

Номер Наименование		Наименование	Норматив времени, час.
номер раздела, темы	наименование раздела, темы	лабораторной работы	Заочная форма обучения 5 семестр
1	Введение		-
2	Создание и импорт геометрии.	Изучение основных функций ПО Elcut	-
3	Моделирование стационарных тепловых полей.	Исследование стационарного теплового поля	2
4	Особенности нестационарных тепловых полей.		-
5	Моделирование нестационарных тепловых полей.	Исследование нестационарного теплового поля	2
6	Дополнительные возможности ПО Elcut	Исследование связанных термомеханических задач	-
		Всего:	4

4.4. Контрольная работа

(для обучающихся заочной формы обучения)

Контрольная работа по дисциплине «Моделирование в теплоэнергетике и теплотехнике» выполняется в выполняется в форме расчетной работы. В состав которой входит две задачи. Первая задача на тему «Стационарное тепловое поле». Вторая задача на тему «Нестационарное тепловое поле». Здания выполняются согласно варианта. Задания приведены в методических указаниях по выполнению контрольной работы для заочников.

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При проведении занятий обучающимся рекомендуется в конспекте отмечать все важные моменты, на которых заостряет

внимание преподаватель, в частности те, которые направлены на качественное выполнение лабораторных работ.

Преподавателем запланировано выполнение всех лабораторных работ в компьютерном классе. При обучении допускается применение учебной дискуссии. Рекомендуется обучающимся технологии фиксировать для себя интересные моменты и пути доступа к функциям ПО с целью запоминания. определенным При ИХ проведении лабораторных работ обучающимися выполняется моделирование одинаковых заданий.

При проведении лабораторных работ используется индивидуальные задания. Обучающиеся, используя полученные знания и опыт работы с ПО рассчитывают тепловые задачи и проверяют правильность решения с помощью моделирования. При этом могут даваться комплексные задания на группу для подготовка и проведение деловых игр с целью формирования взаимовыручки и развития профессиональных навыков обучающихся.

Выполнение самостоятельной работы подразумевает самостоятельное изучение разделов дисциплины, подготовку к занятиям, к лабораторным работам, выполнение контрольной работы (для заочной формы обучения), подготовку к зачету.

Рекомендуемая трудоемкость самостоятельной работы представлена в таблице:

Рекомендуемый режим самостоятельной работы

Наименование вида самостоятельной работы	Рекомендуемая трудоемкость, акад. час. Заочная форма обучения
Самостоятельное изучение тем дисциплины:	62
Создание, открытие и закрытие задач и документов.	10
Приемы управления окнами	10
Окна задач. Окна документов	10
Окна инструментов	10
Обзор основных типов задач. Теплопередача	10
Структура базы данных задачи. Создание геометрической модели	12
Подготовка к практическим занятиям	
Подготовка к лабораторным работам (по 2 часа на каждое занятие)	4
Выполнение контрольной работы	18
Подготовка к зачету	18
Всего:	102

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

6.1. Перечень оценочных средств

- 1. Задания для лабораторных занятий.
- 2. Отчёты обучающихся по лабораторным работам.
- 3 Контрольная работа. (для заочной формы обучения).
- 3. Перечень вопросов к зачету.

6.3. Процедура оценивания результатов освоения дисциплины

Зачет проводится по билетам. Билет состоит из 2 вопросов, на которые обучающий дает развернутый ответ. Время, отводимое обучающемуся на билет для зачета, составляет 1 астрономический час.

Результаты текущего контроля успеваемости зачета заносятся преподавателем в зачетную ведомость, которая сдается в организационный отдел института в день зачета, а также выставляются в зачетную книжку.

6.2. Примеры оценочных средств для зачета

Примерный список вопросов для зачета

- 1. Назовите этапы решения тепловых задачи в ELCUTe.
- 2. Структура тепловой задачи (файлы составляющие задачу). Перечислить, их взаимосвязь и редактирование.
- 3. Этапы создания тепловой задачи. Отличия для различных типов задач.
- 4. Этапы создания геометрической модели. Возможность создание другими графическими редакторами и конвертация в ELCUT.
- 5. Определение физических свойств модели.
- 6. Анализ результатов. Формы выводов результатов моделирования.
- 7. Теплопередача. Особенности. Пример стационарной теплопередачи.
- 8. Теплопередача. Особенности. Пример нестационарной теплопередачи.
- 9. Установка и настройка. Структура и компоненты установленной программы.
- 10. Экспорт и импорт геометрии.
- 11 Ручная генерация сетки.
- 12. Автоматическое улучшение сетки.
- 13. Использование библиотек...
- 14. Нелинейная зависимость (сплайны), функции.
- 15. Связанные задачи и особенности их выполнения. Пример связанной задачи.

Темы рефератов для неуспевающих

- 1. Назначение программного обеспечения ELCUT.
- 2. Применение программного обеспечения ELCUT для моделирования стационарных тепловых полей.
- 3. Применение программного обеспечения ELCUT для моделирования не стационарных тепловых полей.
- 4. Создание геометрии в ELCUT Импорт графических объектов в ELCUT.

6.3 Фонд оценочных средств

Полный банк заданий для текущего контроля и промежуточной аттестации по дисциплине, показатели, критерии, шкалы оценивания компетенций, методические материалы, определяющие процедуры оценивания образовательных результатов, приведены в учебно-методическом комплексе дисциплины.

7. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ УЧЕБНАЯ ЛИТЕРАТУРА

7.1. Основная учебная литература

1.1. Моделирование в электроэнергетике [Электронный ресурс]: учебное пособие / А. Ф. Шаталов, И. Н. Воротников, М. А. Мастепаненко и др. - Ставрополь: АГРУС, 2014. - 140 с. - ISBN 978-5-9596-1059-3.- Доступ из ЭБС «znanium.com»

7.2. Дополнительная учебная литература

- 1. Моделирование систем управления с применением Matlab: Учебное пособие / А.Н. Тимохин, Ю.Д. Румянцев. М.: НИЦ ИНФРА-М, 2016. 256 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Переплёт 7БЦ) ISBN 978-5-16-010185-9 Доступ из ЭБС «znanium.com»
- 2. Моделирование и численная оптимизация замкнутых систем автоматического управления в программе VisSim/ЖмудьВ.А. Новосиб.: НГТУ, 2016. 124 с.: ISBN 978-5-7782-2103-1 Доступ из ЭБС «znanium.com»

.8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

1. Методические указания к выполнению контрольной работы по дисциплине «Моделирование в теплоэнергетике и теплотехнике» для обучающов направления 13.03.01 заочной формы обучения/ Титов С.В.

9. РЕСУРСЫ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. dist.kgsu.ru Система поддержки учебного процесса КГУ.
- 2. http://www.rosteplo.ru. PocTeпло.RU. Информационная система по теплоснабжению. [Электрон-ный ресурс]. —Режим доступа: свободный.
- 3. http://www.edu.ru/ Федеральный портал «Российское образование».
- 4. БС КГУ: http://dspace.kgsu.ru
- 5. ЭБС «Консультант студента»: http://www.studentlibrary.ru
- 6. GEC «znanium.com»: http://znanium.com.
- 7. Официальный сайт программы ELCUT: http://elcut.ru

10. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ

- 1. ЭБС «Лань».
- 2. ЭБС «Консультант студента».
- 3. 9EC «Znanium.com».
- 4. «Гарант» справочно-правовая система.
- 5. ПО Elcut фирмы ТОР. (Студенческая версия).

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально- техническое обеспечение по реализации дисциплины осуществляется в соответствии с требования ФГОС ВО по данной образовательной программе.

12. ДЛЯ ОБУЧАЮЩИХСЯ С ИСПОЛЬЗОВАНИЕМ ДИСТАНЦИОННЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

При использовании электронного обучения и дистанционных образовательных технологий (далее ЭО и ДОТ) занятия полностью или частично проводятся в режиме онлайн. Объем дисциплины и распределение нагрузки по видам работ соответствует п. 4.1. Распределение баллов соответствует п. 6.2 либо может быть изменено в соответствии с решением кафедры, в случае перехода на ЭО и ДОТ в процессе обучения. Решение кафедры об используемых технологиях и системе оценивания достижений обучающихся принимается с учетом мнения ведущего преподавателя и доводится до сведения обучающихся.

Аннотация к рабочей программе дисциплины «Моделирование в теплоэнергетике и теплотехнике»

образовательной программы высшего образования — программы бакалавриата

13.03.01 – Теплоэнергетика и теплотехника

Направленность: Энергообеспечение предприятий

Трудоемкость дисциплины: 3 ЗЕ (108 академических часа)

Семестр: 5 (заочная форма обучения) Форма промежуточной аттестации: зачет

Содержание дисциплины

Моделирование температурных полей. Метод конечных элементов. Физическая модель. Граничные условия. Геометрическая модель. Экранный и программный интерфейс. Интегральный калькулятор.