Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» (КГУ)

Кафедра «Математика физика»

	УТВЕРЖДАЮ
Проректор	по образовательной
и междунар	одной деятельности
	/Кирсанкин А.А./
« »	2025г.

Рабочая программа учебной дисциплины

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

образовательной программы высшего образования – программы бакалавриата 01.03.01 «Математика» направленность: Математическое и программное обеспечение экономической деятельности
Формы обучения: очная

Рабочая программа дисциплины «Математический анализ» составлена в соответствии с учебным планом по программе бакалавриата Математика (Математическое и программное обеспечение экономической деятельности) утвержденным: 27.06.2025 г.

Рабочая программа дисциплины одобрена на заседании кафедры «Математика и физика» 1 сентября 2025 года, протокол № 1

Рабочую программу составил: к.п.н., доцент кафедры МиФ	Т.Н. Михащенко
Согласовано:	
Заведующий кафедрой МиФ	М.В. Гаврильчик
Специалист по учебно-методической работе учебно-методического отдела	Г.В. Казанкова
Начальник управления	И.В. Григоренко

1.ОБЪЕМ ДИСЦИПЛИНЫ

всего: 24 зачетных единиц (864 академических часа) очная форма обучения

Вид учебной работы	На всю		сем	естр	
	дисциплину	1	2	3	4
Аудиторные занятия	420	108	108	108	96
(контактная работа с					
преподавателем)всего					
часов, в том числе:					
Лекции	192	48	48	48	48
Практические	228	60	60	60	48
занятия					
Самостоятельная	444	72	180	72	120
работа, всего часов, в					
том числе					
Подготовка к	108	27	27	27	27
экзамену					
Выполнение	72	18	18	18	18
контрольной работы					
Другие виды	264	27	135	27	75
самостоятельной					
работы					
Вид промежуточной	экзамен	экзамен	экзамен	экзамен	экзамен
аттестации					
Общая трудоемкость	864	180	288	180	216
дисциплины					

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Математический анализ» относится к обязательной части части Блок 1, логически и содержательно -методически взаимосвязана с другими профессиональными дисциплинами: алгеброй, геометрией, теорией функций комплексной переменной, дифференциальными уравнениями, теорией вероятностей, численными методами, учебной и производственной практиками, являясь базой для многих из них, используя понятия и методы некоторых из них.

Освоение «Математического анализа» должно опираться на прочную базу знаний, умений и навыков, приобретенных студентами в школьном курсе математики, особенно в курсе «Алгебра и начала анализа».

Результаты изучения дисциплины необходимы для изучения таких дисциплин как дифференциальные уравнения, численные методы, теория вероятностей, уравнения с частными производными, функциональный анализ, численные методы, вариационное исчисление и многих других.

3.ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Целью освоения дисциплины «Математический анализ» является получение фундаментального математического образования, способствующего развитию личности, подготовке квалифицированного математика, способного применить знания из математического анализа в различных областях науки и ее приложениях

Задачами освоения дисциплины «Математический анализ» являются: -освоение основных понятий и их свойств;

- -овладение фундаментальными понятиями математического анализа, свойствами понятий, основными исчислениями объектов математического анализа;
- -овладение методами и приемами решения конкретных задач из различных областей математики;
- -формирование навыков применения математического анализа для исследования в различных областях математики, физики, химии, биологии;
- -формирование умения выделять конкретное математическое содержание в прикладных задачах учебной и профессиональной деятельности.

Компетенции формируемые в результате освоения дисциплины:

-Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности (ОПК-1);

Индикаторы и дескрипторы части соответствующей компетенции, формируемой в процессе изучения дисциплины «Математический анализ», оцениваются при помощи оценочных средств.

Планируемые результаты обучения по дисциплине «Математический анализ», индикаторы достижения компетенций ОПК-1, перечень оценочных средств

No॒	Код	Наименование	Код	Планируемые	Наименование
			, ,	• •	
п/п	индикатора	индикатора	планируемого	результаты	оценочных
	достижения	достижения	результата	обучения	средств
	компетенции	компетенции	обучения		
1.	ИД-1 _{ОПК-1}	Знать: основные	3 (ИД-1 _{ОПК-1})	Знает: определения и	Вопросы для
		понятия и методы		свойства основных	сдачи экзамена
		решения типовых		понятий,	
		задач		используемых в	
				данной области,	
				методы решения	
				задач, возможные	
				сферы их	
				приложений	
2.	ИД-2 _{ОПК -1}	Уметь: использовать	У (ИД-2 _{ОПК-1})	Умеет: решать	Задания
		полученные знания		основные типы задач	рубежных
		для решения			контролей,
		прикладных задач			вопросы для
					сдачи экзамена
3.	ИД-3 _{ОПК-1}	Владеть:	В (ИД-3 _{ОПК -1})	Владеет: основными	Вопросы для
		математическим		понятиями,	сдачи экзамена
		аппаратом		приемами решения	
		дисциплины,		задач	
		основными			
		понятиями,			
		приемами решения			
		задач			

4. Содержание дисциплины

4.1. Учебно-тематический план

Рубеж	Номер	Наименование раздела,	Количеств	о часов
	раздела,	темы	контактной	й работы с
	темы		преподават	гелем
			Лекции	Практические
				занятия
		Ісеместр	48	60
Рубеж 1	P1	Множества функции,	24	36
		пределы, непрерывность		
Рубеж 2	P2	Производная функция	14	16
Рубеж 3	Р3	Применение	10	8
		производной для		
		исследования функции и		
		построения графика		
		II семестр	48	60

Рубеж 4	P4	Неопределенный интеграл (методы	12	18
		интегрирования)		
Рубеж 5	P5	Определенный интеграл,	6	6
		его свойства и		
		вычисление		
Рубеж 6	P6	Приложения	10	16
		определенного интеграла		
Рубеж 7	P7	Числовые ряды	10	10
Рубеж 8	P8	Функциональные ряды и	10	10
		их применение		
		III семестр	48	60
Рубеж 9	P9	Дифференциальное	24	30
		исчисление функций		
		нескольких переменных		
Рубеж 10	P10	Интегральное	24	30
		исчисление функций		
		нескольких переменных		
		IV семестр	48	48
Рубеж 11	P11	Интегралы по	12	16
		поверхности		
Рубеж 12	P12	Элементы теории поля	12	10
Рубеж 13	P13	Несобственные	12	10
		интегралы и интегралы,		
		зависящие от параметра		
Рубеж	P14	Ряды Фурье	12	12

4.2. Содержание лекционных занятий

Шифр раздела, темы дисциплины	Наименование раздела, темы дисциплины	Наименование и содержание лекции	Трудоемкость,часы
		I СЕМЕСТР	
P1	Множества, функции, пределы, непрерывность	Множество действительных чисел: рациональные числа, необходимость расширения множества рациональных чисел, иррациональные числа, изображение действительных чисел бесконечными десятичными дробями, аксиоматика множества действительных чисел.	2
		Ограниченные и неограниченные числовые множества: ограниченность множества сверху, снизу; ограниченность, неограниченность, границы множеств, окрестности точек, промежутки.	2
		Модуль действительного числа и его свойства: понятие модуля действительного числа, геометрический смысл; свойства модуля действительного числа; расстояние между точками на прямой.	1

Пействительная функция действительной переменной; понятие соответствия между множествами, отображение множесть, функция, числовая функция, действительной переменной; область определения, множество значений, способы задания, сужение функции, композиция функций, обратная функция, множество значений, способы задания, сужение функции, композиция функций, обратная функции, меременные функции, периодические функции, антебранческие, дробно- рациональные функции, правидональные функции, периодические функции, периодические функции, периодические функции, периодические функции. Последовательности и их свойства: понятие последовательности, способы задания, примеры последовательности, ограниченные последовательности, ограниченные последовательности, ограниченные последовательности. Предел последовательности, и к свойства. Свойстваходящихся последовательности, их свойства. Свойстваходящихся последовательности, их свойства. Свойстваходящихся последовательности. Предел подпоследовательности, ограниченность сходящеся последовательности, сохранение знака, предел подпоследовательности, ограниченность сходящейся последовательности, предел пресельный переход в равенстве, предельный переход в равенстве, предельный переход в равенстве, предел ограниченной последовательности, их свойства. Предел функции предел объщне последовательности, их свойства. Предел функции в коеччной точке, на бесконечной большие в коеконечной последовательности. Их свойства. Предел функции в коеконечной точке, на бесконечной большие в коеконечной точке, на бесконечной последовательности.
множествами, отображение множеств, функция, числовая функция, действительной переменной; область определения, множество значений, способы задания, сужение функции, композиция функций, обратная функции по аналитическим выражениям и свойствам: цельке рациональные, дробно- рациональные функции, иррациональные функции, иррациональные функции, иррациональные функции, ипериодические функции, периодические функции, периодические функции, периодические функции, периодические функции. Последовательности и их свойства: понятие последовательности; огособы задания, примеры последовательности, ограниченные последовательности, ограниченность и расколящиеся последовательности, их свойства. Свойствасходящихсяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, иксло «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие; теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенностей и их раскрытие; теоремы о пределе ограниченной последовательностей; неопределенностей и их раскрытие; теоремы о пределе ограниченной последовательностей; неопределенностей и их раскрытие; теоремы о пределе ограниченной последовательностей; неопределенностей и их раскрытие; теоремы о пределе ограниченной последовательностей; неопределенностей и их раскрытие; теоремы о пределе ограниченной последовательностей; неопределенностей и их раскрытие; теоремы о пределе ограниченной последовательностей; неопределенностей и их раскрытие; теоремы о пределе ограниченной последовательностей; неопределенностей и их раскрытие; теоремы от пределенностей и их раскрытие; теоремы от пределенностей и их раскрытие
числовая функция, действительная функция действительной переменной; область определения, множество значений, способы задания, сужение функции, композиция функций, обратная функция. Классификация функции по аналитическим выражениям и свойствам: целые рациональные, дробно- рациональные функции, иррациональные функции, иррациональные функции, иррациональные функции, пероиодические функции, периодические функции. Последовательности и их свойства: понятие последовательности, способы задания, примеры последовательности, ограниченные подпоследовательности, ограниченность сходящиеся последовательности, их свойства. Свойстваеходящихсяпоследовательностей: единственность предела, предел подпоследовательности, сохранение знака, предельный переход в равенстве, предел премежуточной последовательности, предел ограниченной последовательности, инсло «е». Теоремы о пределах последовательности, инсло «е». Теоремы о пределах последовательностей. Виды неопределенносты и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенностей и их раскрытие: теоремы о пределенностей и их раскрытие: теоремы от пределенностей и их раскрытие: теоремы от пределенностей и их раскрытие: теоремы объекть
действительной переменной; область определения, множество значений, способы задания, сужение функции. Композиция функций, обратная функция функций по аналитическим выражениям и свойствам: целье рациональные, дробно- рациональные функции, иррациональные функции, алгебраические, ограниченные, четные и нечетные функции, периодические функции. Последовательности их свойства: понятие последовательности, опособы задания, примеры последовательности, ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся последовательности. И расходящихся последовательности, их свойства. Свойствасходящихсяпоследовательности и расходящиеся последовательности, сохранение знака, пределя подпоследовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел промежуточной последовательности, предел ограниченной последовательности. В цады неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида ⁶ / ₀ ∞, ∞ ∞ ∞, 0 ∞ ∞, 1 ∞; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
определения, множество значений, способы задания, сужение функции, композиция функций, обратная функция. Классификация функций по аналитическим выражениям и свойствам; целые рациональные, дробно- рациональные функции, иррациональные функции, иррациональные функции, иррациональные функции, контолические функции, периодические функции. Последовательности и их свойства: понятие последовательности, способы задания, примеры последовательности, способы задания, примеры последовательности, ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности. Свойствасходящихся последовательности их свойства. Свойствасходящихся последовательности их свойства. Свойствасходящихся последовательности. схоранение знака, предела, предел предел промежуточной последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, исхомене предел ограниченной последовательности, число «е». Теоремы о пределах последовательности, предел ограниченной последовательности, и предел функции и частного сходящихся последовательностей: виды неопределенностей и их раскрытие: теоремы о пределенностей и их раскрытие: теоремы о пределенностей; 1 неопределенности вида 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
задания, сужение функции, композиция функций, обратная функция и финкций по аналитическим выражениям и свойствам; целые рациональные, дробно- рациональные функции, иррациональные функции, иррациональные функции, иррациональные функции, периодические функции. Последовательности и их свойства; понятие последовательности, конотонные опоследовательности, конотонные опоследовательности, конотонные последовательности, ограниченые последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящихсяпоследовательностей: единственность предела, предел подпоследовательности, сураниченность сходящейся последовательности, сходанение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, им свойсты испрациальный переход в керавенстве, предел промежуточной последовательности, предел ограниченной последовательности, им свойсты испорациальный переход в керавенстве, предел промежуточной последовательности, предел ограниченной последовательности, им свойсты испораделенностей и их раскрытие; теоремы о пределе суммы, произведения и частного сходящихя последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty \infty$, $0 \times \infty$, 1∞ ; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции: предел функции в конечной точке, на бесконечной точке, на бесконечной точке, на бесконечные пределы.
Классификация функций по аналитическим выражениям и свойствам: целые рациональные, дробно- рациональные функции, иррациональные функции, игебранческие, трансцендентные функции, ипетопыные, ограниченные, четные и нечетные функции, периодические функции. Последовательности и их свойства: понятие последовательности, способы задания, примеры последовательности, ограниченные последовательности, ограниченные последовательности; ограниченные последовательности; ограниченные последовательности; ограниченные последовательности; ограниченные сметрический смысл, сходящисся и 1 расходящисся последовательности, их свойства. Свойствасходящихсяпоследовательности, их свойства. Свойствасходящихсяпоследовательности; сходящение знака, предел подпоследовательности, ограниченность сходященно последовательности, сходящение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, исло «с». Теоремы о пределах последовательности, исло «с». Теоремы о пределах последовательности, исло «с». Теоремы о пределах последовательностей. Виды неопределенности и и дастного сходящихся последовательностей; 1 неопределенности и иза в обсконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечное ти, ку свойства. Предел функции:предел функции в конечной точке, на бесконечное ти, ку свойства. Предел функции:предел функции в конечной точке, на бесконечное ти, ку свойства. Предел функции:предел функции в конечной точке, на бесконечное ти, ку свойства. Предел функции в конечной точке, на бесконечное ти, ку свойства. Предел функции:предел функции в конечной точке, на бесконечные пределы.
Классификация функций по аналитическим выражениям и свойствам; целые рациональные, дробно- рациональные функции, иррациональные функции, алгебраические, трансцендентные функции; монотонные, ограниченные, четные и нечетные функции, периодические функции. Последовательности и их свойства; понятие последовательности, стособы задания, примеры последовательности, отраниченные последовательности. Отраниченные последовательности. Отраниченные последовательности. Отраниченные последовательности. Отраниченные последовательности. Отраниченные последовательности. Отраниченное, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящися последовательности, их свойства. Свойствасходящися последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел неопределенности и их раскрытие; теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности и иза в обсконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечной босконечные пределы.
выражениям и свойствам: целые рациональные, дробно- рациональные функции, иррациональные функции, иррациональные функции, игобраические, трансцендентные функции; монотонные, ограниченые, четные и нечетные функции, периодические функции. Последовательности и их свойства: понятие последовательности, способы задания, примеры последовательности, способы задания, примеры последовательности; монотонные госледовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящих япоследовательности, их свойства. Свойствасходящих япоследовательности их свойства. Свойствасходящих япоследовательности их свойства. Скодящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел (веремы о пределенностей и их раскрытие: теоремы о пределенностей и их раскрытие: теоремы о пределенностей и их раскрытие: теоремы о пределенностей их раскрытие: теоремы о пределенностей: а пределенностей: а пределенностей их раскрытие: теоремы о пределенностей: а пределенностей: а пределенностей: а пределенностей: а пределенностей: а пределенностей:
дробно- рациональные функции, иррациональные функции, апгебраические, трансцендентные функции, монотонные, ограниченные, четные и нечетные функции, периодические функции. Последовательности и их свойства: понятие последовательности; монотонные последовательности, способы задания, примеры последовательности, ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящихсяпоследовательностей: единственность предела предел подпоследовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, исло «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида ∂/0 √ ∞ ∞ ∞ ∞, 0 ∞ ∞, 1 ∞; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции: предел функции в конечной точке, на бесконечнот, бесконечные пределы.
иррациональные функции, алгебраические, трансцендентные функции; монотонные, ограниченные, четные и нечетные функции, периодические функции. Последовательности и их свойства: понятие последовательности, способы задания, примеры последовательности, способы задания, примеры последовательности, ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящихеяпоследовательности их свойства. Свойствасходящихеяпоследовательности их свойства. Свойствасходящихеяпоследовательности их сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, сохранение знака, предельный переход в равенстве, предел ограниченной последовательности, окажительности их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида ⁰ / ₀ , ∞/√, ∞, ∞, 0, ∞, 1∞; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечноми в пределы.
трансцендентные функции; монотонные, ограниченные, четные и нечетные функции, периодические функции. Последовательности, способы задания, примеры последовательности, ограниченные последовательности, ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящих монотонные гометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящих моноследовательности их свойства. Предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число α . Теоремы о пределах последовательности. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty$ - ∞ , $0 \times \infty$, 1^{∞} ; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции: предел функции в конечной точке, на бесконечности, бесконечные пределы.
ограниченные, четные и нечетные функции, периодические функции. Последовательности и их свойства: понятие последовательности, способы задания, примеры последовательности, способы задания, примеры последовательности; монотонные 2 последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящих япоследовательности, их свойства. Свойствасходящих япоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, и предел ограниченной последовательности, число «е». Теоремы о пределах последовательности Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty$, ∞, 0, ∞, 1, ∞; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции: предел функции в конечной точке, на бесконечности, бесконечные пределы.
периодические функции. Последовательности и их свойства: понятие последовательности, способы задания, примеры последовательности, ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящих япоследовательности, их свойства. Свойствасходящих япоследовательности, их свойства. Свойствасходящих япоследовательности их свойства. Свойствасходящих япоследовательности их свойства. Свойствасходящих япоследовательности: единственность предела подпоследовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, предел ограниченной последовательности. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции: предел функции в конечной точке, на бесконечности, бесконечные пределы.
Последовательности и их свойства: понятие последовательности; способы задания, примеры последовательностей; монотонные последовательности. Ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящихсяпоследовательности, их свойства. Свойствасходящихсяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, иксло «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей: 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечноб польщие последовательности. Их свойства. Предел функции: предел функции в конечной точке, на бесконечности, бесконечные пределы.
последовательности, способы задания, примеры последовательностей; монотонные последовательности, ограниченные последовательности, ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойстваеходящихсяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопеделенности вида $\frac{0}{0}$, ∞ , ∞ - ∞ , 0 × ∞ , 1 °; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
последовательности; монотонные последовательности, ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящихяпоследовательности, их свойства. Свойствасходящихяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в неравенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
последовательности. ограниченные последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойстваеходящихсяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число «е». Теоремы о пределах последовательности. Число «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о предела суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}$, $\frac{\infty}{\infty}$, ∞ - ∞ , 0 × ∞ , 1 $\frac{\infty}{0}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
последовательности. Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящихсяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
Предел последовательности: определение, геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящихсяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предельный переход в неравенстве, предел промежуточной последовательности, предел ограниченной последовательности, иисло «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
геометрический смысл, сходящиеся и расходящиеся последовательности, их свойства. Свойствасходящихсяпоследовательности: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел предельный переход в неравенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\omega}, \infty$ — ∞ , $0 \times \infty$, 1^∞ ; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
расходящиеся последовательности, их свойства. Свойствасходящихсяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число α . Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
Свойствасходящихсяпоследовательностей: единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число <i>«е»</i> . Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
единственность предела, предел подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предельный переход в неравенстве, предел промежуточной последовательности, предел ограниченной последовательности, число α . Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}$, $\frac{\infty}{\infty}$, ∞ - ∞ , 0 × ∞ , 1 °; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции: предел функции в конечной точке, на бесконечности, бесконечные пределы.
подпоследовательности, ограниченность сходящейся последовательности, сохранение знака, предельный переход в равенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число <i>«е»</i> . Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
сходящейся последовательности, сохранение знака, предельный переход в равенстве, предельный переход в неравенстве, предел промежуточной последовательности, предел ограниченной последовательности, предел ограниченной последовательности, число «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty$ - ∞ , $0 \times \infty$, 1^{∞} ; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
знака, предельный переход в равенстве, предельный переход в неравенстве, предел промежуточной последовательности, предел ограниченной последовательности, число «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции: предел функции в конечной точке, на бесконечности, бесконечные пределы.
предельный переход в неравенстве, предел промежуточной последовательности, предел ограниченной последовательности, число «е». Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
промежуточной последовательности, предел ограниченной последовательности, число $\ll \infty$. Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
ограниченной последовательности, число <i>«е»</i> . Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
Теоремы о пределах последовательностей. Виды неопределенностей и их раскрытие: теоремы о пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции: предел функции в конечной точке, на бесконечности, бесконечные пределы.
$\frac{\text{неопределенностей и их раскрытие:}}{\text{пределе суммы, произведения и частного}}$ $\text{сходящихся последовательностей;}$ $\text{неопределенности вида } \frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty};$ $\text{бесконечно малые и бесконечно большие}$ $\text{последовательности, их свойства.}$ $\frac{\text{Предел функции:}}{\text{предел функции в конечной}}$ $\text{точке, на бесконечности, бесконечные пределы.}$
пределе суммы, произведения и частного сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
сходящихся последовательностей; 1 неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 1^{\infty}$; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
неопределенности вида $\frac{0}{0}$, $\frac{\infty}{\infty}$, ∞ - ∞ , $0\times\infty$, 1^{∞} ; бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
бесконечно малые и бесконечно большие последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
последовательности, их свойства. Предел функции:предел функции в конечной точке, на бесконечности, бесконечные пределы.
<u>Предел функции:</u> предел функции в конечной точке, на бесконечности, бесконечные пределы.
точке, на бесконечности, бесконечные пределы.
Определения по Гейне и Коши, их 1
эквивалентность.
Теоремы о пределах функций. Виды
неопределенностей и их раскрытие: бесконечно
малые и бесконечно большие функции, их
свойства; теоремы о пределе суммы,
1
неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, \infty^0, 0^0 1^\infty;$
замечательные пределы: $\lim_{x\to 0} \frac{\sin x}{x} = 1$,
$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e.$
<u>Непрерывность функции в точке:</u> понятие
непрерывности функции в точке, теоремы о
непрерывных функциях, непрерывность сложной
функции; непрерывность различных функций;
своиства функции, непрерывных в точке; точки
разрыва и их классификация; исследование
i I 1 0
функций на непрерывность и построение графиков.

		-	
		Свойства функций, непрерывных на отрезке: ограниченность на отрезке; достижение верхних (нижних) границ; обращение в нуль; о промежуточных значениях; применение свойств для решения задач.	2
		Обратная функция. Теорема существования обратной функции: понятие обратимой функции, понятие обратимой функции. Условия обратимости функции. Теорема существования и непрерывности обратной функции. Существование корня п-ой степени из неотрицательного числа; существование и непрерывность обратных тригонометрических	2
		функций. Показательная, логарифмическая, степенная функции: определения, пределы, непрерывность, графики, применение.	2
P2	Производная функции	Производная функции: определение, вывод формул для нахождения производных основных функций (таблица производных).	2
		Дифференцируемые функции и их свойства: понятие дифференцируемости функции в точке; связь дифференцируемости с существованием производной и непрерывностью. Теоремы о дифференцируемости суммы, произведения и частного. Производная сложной функции.	4
		Производная обратной функции. Логарифмическое дифференцирование: вывод формулы для дифференцирования обратной функции; логарифмическое дифференцирование и его использование для нахождения производной показательно-степенной функции.	2
		Дифференциал функции и его применение: дифференциал функции, его геометрический и физический смысл; дифференциал сложной функции, инвариантность формы дифференциала, применение дифференциала в приближенных вычислениях.	2
		Производные и дифференциалы высших порядков: определения, свойства, нахождение; нарушение инвариантности формы дифференциала второго и т. д. порядков.	2
		Параметрическое задание функций и их дифференцирование: понятие, существование, дифференцирование; производные высших порядков параметрически заданных функций.	2
Р3	Применение производной для исследования	Теоремы о среднем дифференциального исчисления: теоремы Ферма, Ролля, Лагранжа, Коши, их геометрический смысл, использование для решения задач.	2
	функций и построения графиков	Вычисление пределов с помощью производных: правила Лопиталя для раскрытия неопределенностей $\frac{0}{0}, \frac{\infty}{\infty}, \infty-\infty, 0\times\infty, \infty^0, 0^01^\infty$.	2
		Исследование функций на монотонность и экстремумы. Условие постоянства функции: условие постоянства функции, необходимые и достаточные условия монотонности функции на промежутке; необходимые условия экстремума; достаточные условия экстремума (по Іи ІІ производной); доказательство неравенств и тождеств с помощью производной.	2

	Исследование функции на выпуклость, вогнутость и перегиб: достаточные условия выпуклости (вогнутости) функции на промежутке; необходимые условия точки перегиба; достаточное условие точки перегиба; асимптоты, полное исследование функции.	2
	Наименьшее и наибольшее значения функции: понятие, сравнение наименьшего и наибольшего значений функции на промежутке с минимумом и максимумом; нахождение $\min_{[a,b]} f(x)$, $\max_{[a,b]} f(x)$; задачи на оптимизацию.	2
	II СЕМЕСТР	
Р4 Неопределенный интеграл (методы интегрирования)	Первообразная и неопределенный интеграл: понятие и основное свойство первообразной; неопределенный интеграл, его свойства, правила вычисления, таблица интегралов, непосредственное интегрирование.	2
	Методы интегрирования: интегрирование по частям и заменой переменной в неопределенном интеграле.	2
	Интегрирование рациональных функций: интегрирование целых рациональных функций; разложение правильной рациональной дроби на простейшие; метод неопределенных коэффициентов; интегрирование простейших дробей четырех типов.	4
	Интегрирование иррациональных функций: интегралы вида $\int R(x, \sqrt[n]{ax+b})dx$; $\int R(x, \sqrt[k_1]{ax+b}, \sqrt[k_2]{ax+b},, \sqrt[k_n]{ax+b}, dx$; $\int R(x, \sqrt[n]{\frac{ax+b}{cx+d}})dx$; $\int x^m(a+bx^n)^p dx$.	2
	Интегрирование трансцендентных функций: интегралы вида $\int R(\sin x, \cos x) dx$; $\int R(tgx) dx$; $\int (\sin x)^m \cdot (\cos x)^n dx$; $\int \sin \alpha x \cdot \cos \beta x dx$; универсальная тригонометрическая подстановка.	2
Р5 Определенный интеграл, его свойства и	Определенный интеграл: задачи, приводящие к понятию; понятие определенного интеграла, геометрический смысл; условия существования; свойства определенного интеграла.	2
вычисление	Вычисление определенного интеграла: интеграл с переменным верхним пределом, его свойства; формула Ньютона-Лейбница; замена переменной и интегрирование по частям в определенном интеграле.	2
	Несобственные интегралы: интегралы с бесконечными пределами интегрирования; интегралы от неограниченных функций; их вычисление.	2
Р6 Приложения определенного интеграла	Вычисление площадей плоских фигур: понятие квадрируемости фигуры; условия квадрируемости; вычисление площади фигуры в декартовых и полярных координатах.	2
	Вычисление объема тела: понятие кубируемости тела; условия кубируемости; вычисление объема тела по площадям параллельных сечений; вычисление объема тела вращения.	2

		Вычисление длины дуги кривой: понятие спрямляемости дуги; вычислениедлины дуги в декартовых и полярных координатах.	2
		Вычисление площади поверхности вращения: понятие площади поверхности вращения; вычислениеплощади в декартовых и полярных координатах.	2
		Физические приложения определенного интеграла: вычисление статических моментов дуг и пластинок; вычисление координат центра масс дуг и пластинок; вычисление работы переменной силы; вычисление давления на поверхность.	2
P7	Числовые ряды	Числовые ряды: понятие числового ряда, <i>n</i> -я частичная сумма ряда, сумма ряда; сходимость и расходимость ряда; необходимое условие сходимости ряда; умножение ряда на число; сложение рядов; сходимость ряда и его остатка. Геометрический ряд. Гармонический ряд.	4
		Достаточные признаки сходимости рядов с положительными членами: критерий сходимости ряда с положительными членами. Признаки: сравнения, Даламбера, радикальный признак Коши, интегральный признак Маклорена-Коши.	2
		Ряды с произвольными членами: знакопеременные ряды, знакочередующиеся ряды; признак Лейбница для сходимости знакочередующегося ряда; достаточное условие сходимости знакопеременного ряда; абсолютная и условная сходимость рядов.	2
		Свойства абсолютно и условно сходящихся рядов: группировка членов в ряде; перестановка членов в ряде; умножение рядов.	2
P8	Функциональные ряды и их применение	Функциональные последовательности: понятие; точка сходимости; область сходимости; равномерная сходимость; свойства равномерно сходящихся функциональных последовательностей.	1
		Функциональные ряды: понятие; точка сходимости; область сходимости; абсолютная сходимость; равномерная сходимость; свойства равномерно сходящихся функциональных рядов.	1
		Степенные ряды: понятие; теорема Абеля; вид области сходимости; свойства степенных рядов и их использование для нахождения сумм рядов.	2
		Формула Тейлора и ее применение: формула Тейлора для многочлена; формула Тейлора для произвольной функции с дополнительным членом в одной из форм; формулы Маклорена для функций: e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^\alpha$; применение формулы Тейлора для приближенных вычислений.	2
		Разложение функций в степенные ряды: понятие; единственность разложения; ряд Тейлора, коэффициенты Тейлора; необходимое условие разложимости функции в ряд Тейлора; критерий разложимости функции в ряд Тейлора; разложение в ряд Маклорена функций: e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^\alpha$. Косвенные приемы и методы разложения функций в степенные ряды.	2

		Применение рядов Тейлора(степенных рядов):приближенное вычисление значений функций, определенных интегралов, чисел «е» и	2
		«π», логарифмов.	
D C	T 11	III CEMECTP	
P9	Дифференциальное исчисление функций многих переменных	Метрические пространства: понятие метрического пространства; примеры метрических пространств; предел последовательности точек в метрических пространствах; сходимость в пространствах R^n и $\mathcal{C}_{[a;b]}$. Открытые и замкнутые множества в метрических пространствах: виды точек в метрических пространствах; открытые и замкнутые множества и их свойства; замыкание множества; граница множества. Непрерывные отображения метрических пространств:предел отображения; непрерывность отображения в точке и на множестве; свойства непрерывных отображений в точке; непрерывность композиции отображений. Свойства функций на связных и компактных множествах: понятие связности и компактности множеств в метрических пространствах; свойства функций, непрерывных на связных и компактных	2
		множествах. Действительные функции нескольких действительных переменных: понятие; область определения и множество значений; способы задания; графическое изображение функции двух переменных; линии уровня; поверхности уровня.	2
		Предел и непрерывность функции нескольких переменных: определения; геометрический смысл; свойства функций, непрерывных в точке; свойства функций, непрерывных на замкнутых ограниченных областях.	2
		Дифференцируемость и дифференциал функции нескольких переменных: частные производные; необходимые и достаточные условия дифференцируемости; дифференциал, его геометрический смысл для функции двух переменных.	2
		Дифференцирование сложной функции: дифференцирование сложной функции; инвариантность формы дифференциала; применение дифференциала в приближенных вычислениях.	2
		Производные и дифференциалы высших порядков: понятия; обозначения; символическая запись дифференциала любого порядка; нарушение инвариантности формы у дифференциалов высших порядков.	2
		Формула Тейлора для функции двух	2
		переменных: вывод и применения. Неявные функции и их дифференцирование: понятие; условия существования; дифференцирование неявных функций одной и нескольких переменных.	2
		<u>Производная по направлению:</u> понятие; существование; связь с градиентом; касательная плоскость и нормаль к поверхности.	2

	T-		
		Экстремумы функций нескольких переменных: понятие; необходимые условия; достаточные условия; правило отыскания экстремума.	2
		Условные экстремумы: понятие; условия существования; способы отыскания.	2
		Наименьшее и наибольшее значения функции в области: понятие; сравнение с максимумом и минимумом; нахождение; задачи на	2
P10	Интегральное	оптимизацию. <u>Двойной интеграл:</u> понятие; свойства;	2
	исчисление функций многих	вычисление; условия существования. Замена переменных в двойном интеграле: отображение областей; криволинейные	
	переменных	координаты; замена переменных в двойном интеграле; двойной интеграл в полярных координатах.	4
		Приложения двойного интеграла: вычисление площади плоской фигуры; объема тела; площади поверхности; массы пластинки; статических моментов пластинки; координат центра масс пластинки; моментов инерции пластинки.	4
		Тройной интеграл и его применение: понятие; свойства; условия существования; вычисление; вычисление объема тела; массы тела; координат центра масс тела; статических моментов и моментов инерции тела.	4
		Криволинейные интегралы І рода (по длине дуги): понятие; свойства; условия существования; вычисление; вычисление длины дуги; массы дуги; статических моментов дуги; координат центра масс дуги; моментов инерции дуги.	2
		Криволинейные интегралы II рода (по координатам): понятие; свойства; условия существования; вычисление; вычисление работы плоского силового поля; формула Грина; вычисление площади плоской фигуры.	4
		Независимость криволинейного интеграла от формы пути интегрирования: понятие; условия независимости; восстановление функции по ее полному дифференциалу; аналог формулы Ньютона-Лейбница для криволинейного интеграла.	4
		IV CEMECTP	
P11	Интегралы по поверхности	Поверхностные интегралы I рода (по площади поверхности): определение; существование; вычисление.	2
		Приложения поверхностных интегралов рода: вычисление площади поверхности; вычисление массы поверхности; вычисление статических моментов и координат центра масс поверхности; вычисление моментов инерции поверхности; вычисление силы притяжения материальной точки материальной поверхностью.	4
		Поверхностные интегралы II рода (по координатам): определение; существование; вычисление; связь с поверхностными интегралами I рода.	2
		Формула Стокса и ее применения: вывод; условия независимости криволинейного интеграла от пути интегрирования в	2

		пространстве.	
		Формула Остроградского и ее применение:	
		вывод формулы Остроградского-Гаусса;	2
		вычисление объема тела с помощью интеграла по	2
		его поверхности.	
P12	Элементы теории	Скалярное поле и его характеристики: понятие;	
	поля	производная поля по направлению; градиент	4
	ПОЛИ	поля и его связь с производной по направлению;	4
		линии и поверхности уровня скалярного поля.	
		Векторные поля и их характеристики: понятие;	
		примеры; векторные линии; дивергенция; поток	
		поля через поверхность; ротор; циркуляция;	8
		свойства соленоидальных и потенциальных	-
		векторных полей.	
P13	Несобственные	Несобственные интегралы с бесконечными	
1 10	интегралы и	пределами интегрирования: определение,	2
	_	геометрическая интерпретация, свойства,	3
	интегралы,	сходимость, вычисление; применение.	
	зависящие от	Несобственные интегралы от неограниченных	
	параметра	функций: определение, геометрическая	2
		интерпретация, свойства, сходимость,	3
		вычисление; применение.	
		Интегралы, зависящие от параметра:	
		собственные интегралы, зависящие от параметра;	
		несобственные интегралы, зависящие от	6
		параметра; применение интегралов, зависящих от	
		параметра; эйлеровы интегралы.	
P14	Ряды Фурье	Ряды Фурье: ортогональные системы функций;	
		ряд Фурье; равномерная сходимость;	6
		минимальное свойство частных сумм ряда	6
		Фурье; неравенство Бесселя.	
		Тригонометрические ряды Фурье: достаточные	
		условия разложимости функции в	2
		тригонометрический ряд Фурье; сходимость в	2
		среднем; равенство Парсеваля.	
		Интеграл Фурье: интеграл Фурье и	Λ
		преобразование Фурье.	4

4.3. Содержание практических занятий:

Шифр раздела, темы дисциплины	Наименование раздела, темы дисциплины	Наименование и содержание практическогозанятия I СЕМЕСТР	Трудоемкость, часы
P1	Множества, функции, пределы, непрерывность	Множество действительных чисел: рациональные числа, их свойства; расширение множества рациональные чисел; иррациональные числа; изображение чисел на прямой; изображение десятичными дробями; аксиоматика множества действительных чисел.	2
		Ограниченные и неограниченные множества. Промежутки: ограниченность множества снизу, сверху; ограниченность; границы, их характеристики; промежутки на прямой; окрестности точек на прямой.	2
		Модуль действительного числа и его свойства: понятие, геометрический смысл; расстояние между точками на прямой; свойства модуля; применение для решения уравнений и неравенств.	2

Действительная функция действительной переменной: соответствие между множествами; отображение множеств; функция; числовая функция; действительная функция действительной переменной; область определения, множество значений; сужение функции; обратная функция; композиция функций; операции над функциями; примеры функций; способы	1
задания.	
Область определения и множество значений функции: понятия; области определения и множества значений основных функций; нахождение областей определения и множеств значений различных функций, в том числе для суммы, произведения и частного функций; для композиции функций.	1
Классификация функций по аналитическим выражениям и свойствам: целые рациональные, дробно-рациональные функции; иррациональные функции; алгебраические функции; трансцендентные функции; монотонные функции; ограниченные функции; четные и нечетные функции; периодические функции; применение свойств функций для решения задач и построения графиков.	2
Последовательности и их свойства: понятие; способы задания; арифметическая и геометрическая прогрессии; монотонные последовательности; ограниченные последовательности; применение к решению задач.	2
Предел последовательности: окрестности конечной точки и бесконечностей; предельная точка множества; конечный предел последовательности; бесконечный предел; геометрический смысл; сходящиеся и расходящиеся последовательности.	1
Свойствасходящихся последовательностей: единственность предела; ограниченность сходящейся последовательности; предел подпоследовательности; сохранение знака пределом и членами последовательности; предельный переход в равенстве; предельный переход в неравенстве; предел промежуточной последовательности; предел монотонной последовательности; число «е»; применение свойств к решению задач.	2
Теоремы о пределах последовательностей. Неопределенности и их раскрытие: понятие и примеры бесконечно малых и бесконечно больших последовательностей; их свойства; теоремы о пределе суммы, произведения и частного последовательностей; неопределенности вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty$ - ∞ , $0 \times \infty$, 1^{∞} и их раскрытие.	2
Предел функции в точке и на бесконечности: понятия; определения по Гейне и Коши, их эквивалентность; геометрический смысл; различные представления предела функции в точке и на бесконечности; построение графика функции; асимптоты; свойства функций, имеющих предел в точке.	2
Теоремы о пределах функций. Виды неопределенностей и их раскрытие: бесконечно малые и бесконечно большие функции, их свойства; теоремы о пределах суммы, произведения и частного функций; сравнение бесконечно малых и бесконечно больших функций; эквивалентность бесконечно малых функций; виды неопределенностей и их раскрытие.	2

	ı		
		Замечательные пределы: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ и следствия из	
		1	2
		него; $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$ и следствия из него;	-
		применение для раскрытия неопределенностей.	
		Заключительное занятие по теме «Пределы	2
		последовательностей и функций»: повторение теории и	2
		решение задач по всей теме.	
		РУБЕЖ 1. Контрольная работа№1 по теме «Пределы	2
		последовательностей и функций»	
		Непрерывность функции в точке: различные	
		определения непрерывности функции в точке, их	
		использование для решения задач; теоремы о	2
		непрерывных функциях; непрерывность основных	
		функций; свойства функций, непрерывных в точке.	
		Точки разрыва и их классификация, исследование	
		функций на непрерывность: классификация точек	_
		разрыва функции; исследование функций на	2
		непрерывность и построение графиков функций.	
		Свойства функций, непрерывных на отрезке:	
		ограниченность; достижение точных границ;	
			2
		обращение в нуль; о промежуточных значениях;	
		применение свойств для решения задач.	
		Самостоятельная работа по теме «Непрерывность	1
		функции»	
		Обратная функция. Теорема существования обратной	
		функции: обратимая функция, условия обратимости;	
		обратная функция, теорема существования и	
		непрерывности обратной функции; существование	1
		корня п-ой степени из неотрицательного числа;	
		существование и непрерывность обратных	
		тригонометрических функций.	
		Показательная, логарифмическая, степенная функции:	
		степень с натуральным и целым показателем, их	
		свойства, степенная функция с натуральным и целым	
		показателем; степень и степенная функция с	1
		рациональным показателем; степень с	1
		иррациональным показателем; показательная функция;	
		логарифмическая функция; степенная функция с	
		любым действительным показателем.	
P2	Производная	Вычисление производной функции по определению:	
	функции	определение производной функции в точке; алгоритм	
	**************************************	нахождения производной по определению;	2
		односторонние производные и их связь с производной	2
		функции в точке.	
		Дифференцирование функций: дифференцируемость	
		функции в точке и ее связь с существованием	
		производной; таблица производных; теоремы о	2
			۷
		дифференцировании суммы, произведения и частного;	
		производная сложной функции.	
		Дифференцирование обратной функции.	
		Логарифмическое дифференцирование: нахождение	
		производной обратной функции; метод	2
		логарифмического дифференцирования и его	_
		применение для нахождения производной	
		показательно-степенной функции.	
		Применение производной к решению геометрических	
		и физических задач: геометрический и физический	2
		смысл производной и их применение для решения	4
		задач.	
		Дифференциал функции и его применение:	
		определение; геометрический и физический смысл;	2
		дифференциал сложной функции и инвариантность	
	i .	15 ,	

	формы дифференциала; применениедифференциала в приближенных вычислениях.	
	Производные и дифференциалы высших порядков: определение; свойства; нахождение; нарушение инвариантности формы у дифференциалов высших порядков.	2
	Параметрическое задание функций и их дифференцирование: определение, существование, примеры, производные 1 и высших порядков параметрически заданных функций.	2
	РУБЕЖ 2. Контрольная работа по теме№2	2
Применение производной для исследования функций и	Теоремы о среднем дифференциального исчисления: теоремы Ферма, Ролля, Лагранжа и Коши и их применение для доказательства неравенств и решения задач.	0
построения графиков	Вычисление пределов с помощью производных: правила Лопиталя для раскрытия неопределенностей и их применение для решения задач.	2
	Исследование функций на монотонность и экстремумы: условие постоянства функции на промежутке, доказательство тождеств; условие монотонности функции на промежутке, доказательство неравенств; необходимые условия экстремума функции; достаточные условия экстремума (по знаку Іи ІІ производной).	2
	перегиб: достаточные условия выпуклости ивогнутостифункции на промежутке; необходимые условия точки перегиба; достаточные условия точки перегиба графика функции. Общая схема исследования	2
	Наименьшее и наибольшее значения функции на промежутке: понятия; сравнение с минимумом и максимумом функции, нахождение, применение к решению экстремальных задач (задач на оптимизацию).	2
	II СЕМЕСТР	
Неопределенный интеграл (методы интегрирования)	<u>Неопределенный интеграл:</u> таблица интегралов; непосредственное интегрирование; правила интегрирования.	2
	<u>Интегрирование по частям в неопределенном</u> интеграле: формула $\int u dv = uv - \int v du$; классы функций, интегрируемых методом интегрирования по частям.	2
	Замена переменной в неопределенном интеграле: формула $\int f(x)dx = \int f(\varphi(t)) \cdot \varphi'(t)dt$; подведение под знак дифференциала как замена переменной.	2
	Интегрирование рациональных функций: простейшие дроби и их интегрирование; разложение правильной дроби на простейшие; метод неопределенных коэффициентов.	4
	Интегрирование иррациональных функций: вычисление интегралов вида: $\int R(x, \sqrt[h]{ax+b}) dx$; $\int R(x, \sqrt[h]{ax+b}, \sqrt[h^2]{ax+b},, \sqrt[h^n]{ax+b}, dx$;	2
	производной для исследования функций и построения графиков Неопределенный интеграл (методы	приближенных вычислениях. Производные и лифференциалы высших порядков: определение; свойства; нахождение; нарушение инвариантности формы у дифференциалов высших порядков. Параметрическое задание функций и их дифференцирование; прижеры, производные и высших порядков параметрически заданиых функций. РУБЕЖ 2. Контрольная работа по теме№2 Применение производной для исследования функций и построения графиков применение для доказательства неравенств и решения задач. Вычисление пределов с помощью производных: правила Лопиталя для раскрытия неопределенностей и их применение для решения задач. Исследование функций на монотонность и экстремумы; условне постоянства функции на промежутке, доказательство тождеств; условне монотонности функции на промежутке, доказательство неравенств; необходимые условия экстремума (по знаку Iи II производной). Исследование функций на выпуклости ивотичующий, достаточные условия выпуклости ивотичуюстифункции на промежутке; необходимые условия точки перегиба; достаточные условия точки перегиба; достаточные условия точки перегиба промежутке; необходимые условия точки перегиба; постаточные условия точки перегиба; постаточные условия точки перегиба промежутке; необходимые условия точки перегиба промежутке; необходимые условия точки перегиба промежутке; поятия; сравнение о минимумом функции. Наименьшее и наибольшее значения функции на промежутке; поятия; сравнение о минимумом и максимумом функции, нахождение, применение к решению экстремальных задач (задач на оптимизацию). Несопределенный интеграр, забина интеграр, бормула Дибу и и и и и и и и и и и и и и и и и и

Ì	1		
		$\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx;$	
		$\int D(x) \sqrt{x^2 + hx + h} dx = \int \frac{Mx + N}{hx + h} dx$	
		$\int R(x, \sqrt{ax^2 + bx + c}) dx; \int \frac{Mx + N}{\sqrt{ax^2 + bx + c}} dx;$	
		$\int R\left(x,\sqrt{a^2\pm x^2}\right)dx; \int x^m(a+bx^n)^p dx.$	
		Интегрированиетригонометрических выражений:	
		вычисление интегралов вида: $\int R(\sin x, \cos x) dx$;	2
		$\int R(tgx)dx; \int (\sin x)^m \cdot (\cos x)^n dx; \int \sin \alpha x$	_
		$\cos \beta x dx$; $\int \sin \alpha x \cdot \sin \beta x dx$; $\int \cos \alpha x \cdot \cos \beta x dx$. Заключительное занятие по P4: повторение всех	
		<u>заключительное занятие по г4:</u> повторение всех методов интегрирования.	2
		РУБЕЖ 3. Контрольная работа№3	2
P5	Определенный	Определенный интеграл: вычисление по определению;	
	интеграл, его	свойства и их применение; геометрический смысл;	
	свойства и	формула Ньютона-Лейбница. Вычисление	4
	вычисление	определенного интеграла: интегрирование по частям и	
		заменой переменной. <u>Несобственные интегралы:</u> вычисление и	
		геометрический смысл несобственных интегралов с	•
		бесконечными пределами интегрирования и от	2
		неограниченных функций.	
P6	Приложения	Вычисление площадей плоских фигур: площадь	
	определенного	криволинейной трапеции; площадь фигуры в	2
	интеграла	декартовых координатах; площадь фигуры в полярных координатах.	
		Вычисление объемов тел: вычисление объема тела по	
		площадям параллельных сечений; вычисление объема	4
		тела вращения.	
		Вычисление длины дуги плоской кривой:	4
		вычислениедлины дуги в декартовых и полярных координатах.	4
		Вычисление площади поверхности вращения:	
		вычислениеплощадиповерхности вращения в	2
		декартовых и полярных координатах.	
		Применения определенного интеграла в механике:	
		статические моменты дуги и пластинки; координаты центра масс дуги и пластинки; работа переменной	2
		силы; давление на поверхность.	
		Контрольная работа№4.	2
P7	Числовые ряды	<u>Числовые ряды:</u> частичная сумма ряда, сумма ряда;	<u>~</u>
1 /	исловые ряды	<u>числовые ряды:</u> частичная сумма ряда, сумма ряда; сходимость, расходимость; свойства рядов;	
		геометрический ряд и его сходимость; необходимое	2
		условие сходимости; гармонический ряд и его	
		расходимость.	
		Достаточные признаки сходимости рядов с положительными членами: применение теорем	
		положительными членами: применение теорем сравнения; признака Даламбера; радикального	2
		признака Коши; интегрального признака Маклорена-	~
		Коши для исследования рядов на сходимость.	
		Ряды с произвольными членами: исследование на	
		абсолютную и условную сходимость знакопеременных (знакочередующихся) рядов; приближенное	2
		(знакочередующихся) рядов; приолиженное вычисление сумм рядов.	
		Заключительное занятие по Р7: исследование рядов на	
		сходимость по определению сходимости; применение	4
		признаков сходимости для исследования рядов на	+
P8	Фининононон	СХОДИМОСТЬ.	
10	Функциональные ряды	<u>Функциональные последовательности:</u> точка сходимости, область сходимости; равномерная	1
	T.	сходимость; свойства равномерно сходящихся	1
•	•		

		функциональных последовательностей.	
		Функциональные ряды: точка сходимости; область	
		сходимости; равномерная сходимость; свойства	1
		равномерно сходящихся функциональных рядов.	
		Степенные ряды: теорема Абеля; нахождение радиуса,	
		интервала, области сходимости степенного рядя;	2
		свойства степенных рядов и их применение для	2
		нахождения сумм рядов.	
		Формула Тейлора и ее применение: формула Тейлора	
		для многочлена; формула Тейлора для произвольной	1
		функции; применение формулы Тейлора в	1
		приближенных вычислениях.	
		Разложение функций в степенные ряды: нахождение	
		коэффициентов Тейлора; оценка погрешности	1
		вычисления суммы ряда; алгоритм разложения	•
		функции в степенной ряд.	
		Применения рядов Тейлора:вычисление значений	
		функций; приближенное вычисление определенных	2
		интегралов; вычисление чисел «е» и «π», логарифмов;	
		вычисление пределов.	
		РУБЕЖ 4. Контрольная работа №5	2
		III CEMECTP	
P9	Дифференциальное	Метрические пространства: понятие метрического	
	исчисление функций	пространства; примеры метрических пространств;	
	многих переменных	доказательство того, что то или иное множество с	1
		заданным расстоянием, является метрическим	
		пространством; связь с практикой.	
		Открытые и замкнутые множества в метрических	
		пространствах: различные виды точек в метрических	
		пространствах; открытые и замкнутые множества, их	1
		свойства; граница; замыкание; замыкание и	
		замкнутость.	
		Непрерывные отображения метрических пространств:	
		предел отображения в точке; непрерывность	1
		отображения в точке и на множестве; свойства	1
		отображений, непрерывных в точке.	
		Свойства функций, непрерывных на связных и	
		компактных множествах: понятие связности,	1
		компактности; свойства связных и компактных	
		множеств; свойства отображений на связных и	
		компактных множествах.	
		Действительные функции нескольких действительных	
		переменных: понятие; способы задания; область определения, множество значений; графическое	2
			2
		изображение функции двух переменных; линии и	
		поверхности уровня.	
		Предел и непрерывность функции нескольких переменных: понятия (различные определения и их	
		эквивалентность); свойства функций, непрерывных в	2
		точке; свойства функций на замкнутых ограниченных	
		областях.	
		Дифференцируемость и дифференциал: частные	
		производные, их нахождение; геометрический смысл	
		частных производных функции двух переменных;	
			2
		пифференцируемость функции в толке, условия	
		дифференцируемость функции в точке; условия	
		дифференцируемости; дифференциал и его выражение	
			2

	İ		
		инвариантность формы дифференциала; применение	
		дифференциала в приближенных вычислениях.	
		Производные и дифференциалы высших порядков:	
		определения; обозначения; нахождение;	2
		символическая запись дифференциала любого порядка;	2
		нарушение инвариантности формы у дифференциалов	
		высших порядков.	
		Самостоятельная работа «Дифференцирование	2
		функций многих переменных».	<u> </u>
		Формула Тейлора для функции двух переменных:	
		вывод; применение формулы Тейлора для	2
		приближенных вычислений.	
		Неявные функции: понятие; условия существования;	2
		нахождение производных неявно заданных функций.	2
		Производная по направлению: определение;	
		нахождение; связь с градиентом; касательная	2
		плоскость и нормаль к поверхности.	2
		Экстремумы функций нескольких переменных:	
		определение; условия существования; нахождение;	2
		задачи на экстремумы.	4
		Условные экстремумы: определение; условия	2
		существования; нахождение; задачи на экстремумы.	
		Наименьшее и наибольшее значения функции в	2
		области: понятие; нахождение; задачи на	2
		оптимизацию.	
		РУБЕЖ 5. Контрольная работа№5 «Функции многих	2
		переменных и их применение».	
P10	Интегральное	Двойные интегралы: определение; свойства;	4
	исчисление функций	вычисление; условия существования.	
	многих переменных	Замена переменных в двойном интеграле: вычисление	
		двойного интеграла с помощью замены; двойной	4
		интеграл в полярных координатах.	
		Приложения двойного интеграла: вычисление площади	
		плоской фигуры; объема тела; площади поверхности;	
		массы пластинки; статических моментов пластинки;	4
		координат центра масс пластинки; моментов инерции	
		пластинки.	
		РУБЕЖ 6 Контрольная работа№6 «Двойные	
		интегралы и их приложения».	2
		<u>Тройные интегралы:</u> понятие; свойства; вычисление;	
		приложения геометрические и физические.	4
		Самостоятельная работа «Тройной интеграл и его	
		приложения».	2
		<u>приложения».</u> Криволинейные интегралы I рода (по длине дуги):	
		понятие; свойства; вычисление; геометрические и	3
		понятие; своиства; вычисление; геометрические и физические приложения.	3
		1	
		<u>Криволинейные интегралы II рода (по</u>	2
		координатам):понятие; свойства; вычисление;	3
		геометрические и физические приложения.	
		Независимость криволинейного интеграла от формы	
		пути: восстановление функции по ее полному	2
		дифференциалу; аналог формулы Ньютона-Лейбница	2
		для криволинейного интеграла.	
		Самостоятельная работа по криволинейным	2
		интегралам.	<u> </u>
-		IV CEMECTP	
P11	Интегралы по	Поверхностные интегралы І рода (по площади	
	поверхности	поверхностиви интегралы г рода (по илощади поверхности): вычисление для случая, когда	_
		поверхности: вычисление для случая, когда поверхность задана уравнением в явном виде;	2
		г повераность задана уравнением в авпом виде,	
		*	
		поверхность задана параметрическими уравнениями. Приложения поверхностных интегралов рода:	2

Ī	1		
		вычисление площади поверхности; вычисление массы	
		поверхности; вычисление статических моментов	
		поверхности и моментов инерции; вычисление	
		координат центра масс поверхности.	
		Поверхностные интегралы II рода (по координатам):	
		вычисление для случая, когда поверхность задана	4
		уравнением в явном виде; поверхность задана	4
		параметрическими уравнениями.	
		Формула Стокса и ее применение: вычисление	
		криволинейных интегралов с помощью формулы	4
		Стокса; восстановление функции по ее полному	4
		дифференциалу.	
		Формула Остроградского-Гауса и ее применение:	
		вычисление поверхностных интегралов с помощью	2
		формулы Остроградского; вычисление объема тела с	2
		помощью поверхностного интеграла.	
		РУБЕЖ 7. Контрольная работа№7 «Поверхностные	
		интегралы».	2
P12	Элементы теории	Скалярное поле и его характеристики: производная по	
112	поля	направлению, ее физический смысл; градиент; связь	4
	ПОЛИ	градиента с производной по направлению.	4
		Векторные поля и их характеристики: вычисление	
		* *	
		дивергенции; потока поля через поверхность; ротора;	4
		циркуляции; использование характеристик при	4
		рассмотрении соленоидальных и потенциальных	
		векторных полей.	
		РУБЕЖ 8. Контрольная работа№8 «Элементы теории	2
D12		<u>ПОЛЯ».</u>	
P13	Несобственные	Несобственные интегралы с бесконечными пределами	
	интегралы и	интегрирования: вычисление; исследование на	2
	интегралы,	сходимость; геометрическая интерпретация;	_
	зависящие от	применение.	
	параметра	Несобственные интегралы от неограниченных	_
		функций: вычисление; исследование на сходимость;	2
		геометрическая интерпретация; применение.	
		Самостоятельная работа «Несобственные интегралы».	2
		Интегралы, зависящие от параметра: собственные	
		интегралы, зависящие от параметра: понятие;	
		равномерное стремление к предельной функции;	
		предельный переход под знаком интеграла;	4
		дифференцирование и интегрирование под знаком	
		интеграла; применение.	
	Darry Christia	<u>Ряды Фурье:</u> ортогональные и нормированные системы	
D11			
P14	Ряды Фурье		
P14	гяды Фурье	функций; ряды и коэффициенты Фурье;	
P14	гяды Фурье	функций; ряды и коэффициенты Фурье; тригонометрические ряды Фурье; разложение в ряд	
P14	гяды Фурье	функций; ряды и коэффициенты Фурье; тригонометрические ряды Фурье; разложение в ряд Фурье периодических функций; сдвиг сегмента	6
P14	гяды Фурье	функций; ряды и коэффициенты Фурье; тригонометрические ряды Фурье; разложение в ряд Фурье периодических функций; сдвиг сегмента разложения; изменение длины сегмента разложения;	6
P14	гяды Фурье	функций; ряды и коэффициенты Фурье; тригонометрические ряды Фурье; разложение в ряд Фурье периодических функций; сдвиг сегмента разложения; изменение длины сегмента разложения; разложение в ряд Фурье четных и нечетных функций;	6
P14	гяды Фурье	функций; ряды и коэффициенты Фурье; тригонометрические ряды Фурье; разложение в ряд Фурье периодических функций; сдвиг сегмента разложения; изменение длины сегмента разложения; разложение в ряд Фурье четных и нечетных функций; разложение в ряд Фурье функций, заданных на [0; π];	6
P14	гяды Фурье	функций; ряды и коэффициенты Фурье; тригонометрические ряды Фурье; разложение в ряд Фурье периодических функций; сдвиг сегмента разложения; изменение длины сегмента разложения; разложение в ряд Фурье четных и нечетных функций; разложение в ряд Фурье функций, заданных на [0;π]; разложение функций в комплексный ряд Фурье.	6
P14	гяды Фурье	функций; ряды и коэффициенты Фурье; тригонометрические ряды Фурье; разложение в ряд Фурье периодических функций; сдвиг сегмента разложения; изменение длины сегмента разложения; разложение в ряд Фурье четных и нечетных функций; разложение в ряд Фурье функций, заданных на [0;π]; разложение функций в комплексный ряд Фурье. Самостоятельная работа «Тригонометрические ряды	
P14	гяды Фурье	функций; ряды и коэффициенты Фурье; тригонометрические ряды Фурье; разложение в ряд Фурье периодических функций; сдвиг сегмента разложения; изменение длины сегмента разложения; разложение в ряд Фурье четных и нечетных функций; разложение в ряд Фурье функций, заданных на [0;π]; разложение функций в комплексный ряд Фурье.	2 4

4.4.Контрольные работы

Контрольная работа № 1 (рубеж 1), Контрольная работа № 2 (рубеж 2),

Домашняя контрольная работа №1 Контрольная работа № 3 (рубеж 3), Контрольная работа № 4(рубеж 4), Контрольная работа № 5 (рубеж 5), Контрольная работа № 6 (рубеж 6), Контрольная работа № 7 (рубеж 7), Контрольная работа № 8 (рубеж 8).

Цель контрольных работ: проверить знания, умения и навыки студентов в решении задач, осуществить коррекцию знаний студентов. Тексты контрольных работ приведены в методических рекомендациях, указанных в разделе 8. Учебно-методическое обеспечение самостоятельной работы.

5. Методические указания для обучающихся по освоению дисциплины.

Приступая к изучению математического анализа, необходимо повторить: основные понятия курса алгебры и начал анализа средней школы; основные формулы, необходимые для успешного освоения курса, восстановить в памяти основные функции, их свойства и графики; уметь решать уравнения и неравенства, в том числе методом интервалов.

Для успешного освоения курса обязательно посещение лекций и практических занятий и регулярное конспектирование материала лекций, и участие в обсуждении решения задач на практических занятиях. При подготовке практическим занятиям сначала нужно теоретический материал, необходимый для решения задач; затем выполнить задания для самостоятельного решения по теме предыдущего занятия, после этого изучить теоретический материал очередного практического занятия. Подготовка нужна не только к практическим занятиям, но и к лекциям. Перед очередной лекцией необходимо повторить материал предыдущих лекций, так как материал новой лекции зачастую опирается на уже известный материал .При выполнении заданий для самостоятельного решения нужно фиксировать все трудные места и на консультациях попытаться преодолеть их с помощью преподавателя.

Систематическая подготовка к аудиторным занятиям и активное участие в рассмотрении вопросов, как на практических занятиях, так и на лекциях является залогом успешного прохождения рубежных контролей и промежуточных аттестаций по дисциплине.

При прослушивании лекций и при выполнении заданий на практических занятиях рекомендуется акцентировать внимание на алгоритмизацию действий по выполнению заданий, что способствует более глубокому и прочному усвоению методов математического анализа.

Для текущего контроля успеваемости используется балльнорейтинговая система контроля и оценки активности обучающихся, что способствует лучшему освоению материала и получению высокой оценки по результатам освоения дисциплины. Выполнение самостоятельной работы подразумевает самостоятельное изучение разделов дисциплины, подготовку к рубежным контролям, к практическим занятиям подготовку к контрольным работам, подготовку к экзаменам.

Рекомендуемая трудоемкость самостоятельной работы

	Рекоме	Рекомендуемая трудоемкость,				
Наименование вида самостоятельной работы	акад.час					
	I	II	III	IV		
	семестр	семестр	семестр	семестр		
Углубленное изучение разделов, тем	8	116	8	59		
лекционного курса						
-применение производной к решению						
геометрических и физических задач						
-приложения определенного интеграла						
-функциональные ряды						
-интегралы по поверхности						
-элементы теории поля						
-ряды Фурье						
Подготовка к практическим занятиям (по 0,5	15	15	15	12		
часа на каждое занятие)						
Подготовка к рубежным контролям (по 1;2	4	4	4	4		
часа на рубеж)						
Подготовка к экзамену	27	27	27	27		
Подготовка к контрольной работе	18	18	18	18		
ИТОГО	72	180	72	120		

6. Фонд оценочных средств для аттестации по дисциплине

6.1.Перечень оценочных средств

- 1. Бально-рейтеноговая система контроля и оценки академической активности обучающихся в КГУ
- 2. Банк заданий к рубежным контролям № 3,5,9,12
- 3. Материалы к экзамену.
- 4. Контрольные работы (рубежные контроли №1,2,4,6,7,8,10.11)

6.1 Система балльно-рейтинговой оценки работы обучающихся по дисциплине

I семестр

	1 contect p									
	$N_{\overline{0}}$	Наименование		Содержание						
				Распределение баллов						
•	1	Распределение баллов по видам учебной работы, сроки сдачи учебной работы	Вид учеб ной работ ы	Посещ. лекций 1x24	Работа на практ.заня тиях 0,5x28	Рубеж1 Контроль ная работа №1	Рубеж2 Контроль ная работа №2	Самост Работа №1	Домаш няя контро льная работа №1	экзамен

Балл	24	14	14	10	4	4	30
ьные			на 14	на 26	на 19		
оцен			практ.	практ.заня	практ.		
ки			занятии	тии	заняти		

II семестр

No	Наименование							
		Распределение баллов						
1	Распределение баллов по видам учебной работы, сроки сдачи учебной работы	Вид учебной работы	Посещ. лекций 1x24	Работа на практ.зан ятиях 0,5x28	Рубеж3 Контрол ьная работа №3	Самостоят ельная работа №2	Рубеж4 Контрольна я работа №5	экзамен
		Балльные оценки	24	15	11 На 9практ. занятии	10 на 20 практ. занятии	10 на 30практ. занятии	30

III семестр

№	Наименование				•			
			Распределение баллов					
1	Распределение баллов по видам учебной работы, сроки сдачи учебной работы	Вид учебной работы	Посещ. лекций 0,5x24	Работа на практ. занятиях 1х28	Рубеж5 Контрольна я работа работа №6	Рубеж6 Контрольна я работа №7	Самост. Работа №3	экзамен
		Балльные оценки	12	28	10 на15 практ. занятии	10 на22 практ. занятии	10 На 30практ. занятии	30

IV семестр

No	Наименование							
				Расп	ределение	баллов		
1	Распределение баллов по видам учебной работы,	Вид учебной работы	Посещ. лекций 0,5x24	Работа на практ.заня тиях 1х22	Рубеж7 Контр работа №7	Рубеж8 Контр. Работа №8	Самост. Работа №4	экзамен
	учебной работы	Балльные оценки	12	22	10 На 8практ. занятии	10 На13 практ. занятии	9 на 22практ. занятии	30

2	Критерий пересчета баллов в традиционную оценку по итогам	60 и менее баллов – неудовлетворительно (не зачтено); 6173 – удовлетворительно (зачтено); 74 90 – хорошо; 91100 – отлично	
	работы в семестре		
3	Критерий допуска к промежуточной аттестации по дисциплине (зачет), возможно сти получения автоматического зачета по	Для допуска к промежуточной аттестации по дисциплине за семестр обучающийся должен набрать по итогам текущего и рубежного контролей не менее 51 балла. В случае если обучающийся набрал менее 51 балла, то к аттестационным испытаниям он не допускается. Для получения экзамена без проведения процедуры промежуточной аттестации обучающемуся необходимо набрать в ходе текущего и рубежных контролей не менее 61 балла. В этом случае итог балльной оценки, получаемой обучающимся, определяется по количеству баллов, набранных им в ходе текущего и рубежных	

	дисциплине	контролей. При этом, на усмотрение преподавателя, балльная оценка	
		обучающегося может быть повышена за счет получения	
		дополнительных баллов за академическую активность.	
		Обучающийся, имеющий право на получение оценки без	
		проведения процедуры промежуточной аттестации, может повысить ее	
		путем сдачи аттестационного испытания. В случае получения	
		обучающимся на аттестационном испытании 0 баллов итог балльной	
		оценки по дисциплине не снижается.	
		За академическую активность в ходе освоения дисциплины,	
		участие в учебной, научно-исследовательской, спортивной, культурно-	
		творческой и общественной деятельности обучающемуся могут быть	
		начислены дополнительные баллы. Максимальное количество	
		дополнительных баллов за академическую активность составляет 30.	
		Основанием для получения дополнительных баллов являются:	
		- выполнение дополнительных заданий по дисциплине (модулю,	
		практике); дополнительные баллы начисляются преподавателем;	
		- участие в течение семестра в учебной, научно-исследовательской,	
		спортивной, культурно-творческой и общественной деятельности КГУ.	
4	Формы и виды	В случае если к промежуточной аттестации (экзамену) набрана	
	учебной работы	сумма менее 51 балла, обучающемуся необходимо набрать	
	для	недостающее количество баллов за счет выполнения дополнительных	
	неуспевающих	заданий, до конца последней (зачетной) недели семестра.	
	(восстановивших	Ликвидация академических задолженностей, возникших из-за разности	
	ся на курсе	в учебных планах при переводе или восстановлении, проводится путем	
	обучения)	выполнения дополнительных заданий, форма и объем которых	
	обучающихся для	определяется преподавателем	
	получения		
	недостающих		
	баллов в конце		
	семестра		

6.3 Процедура оценивания результатов освоения дисциплины

Рубежные контроли проводятся в виде контрольных работ, экзамены проводятся в письменной форме по билетам; на рубежных контролях предлагаются практические задания, на экзаменах предлагаются 2 теоретических вопроса (по 7 баллов) и 2 практических задания(по 8 баллов).

Перед проведением рубежных контролей проводятся итоговые занятия по разделам, на которых разбираются задания из раздела, по которому предстоит рубежный контроль. Результаты рубежных контролей и текущей успеваемости заносятся в ведомость учета текущей успеваемости. Время, отводимое на экзамен 2-3 часа. Результаты текущего контроля и экзамена заносятся в экзаменационную ведомость, которая сдается в организационный отдел института; результаты экзамена выставляются в зачетную книжку обучающегося в день экзамена.

6.4. Примеры оценочных средств для рубежных контролей и экзамена Рубежный контроль №1 (контрольная работа №1)

Вариант 0

1. Пользуясь определениями пределов последовательности и функции, докажите равенства:

a)
$$\lim_{x \to \infty} \frac{2n-15}{3n+4} = \frac{2}{3}$$
; 6) $\lim_{x \to 1} \frac{3x+1}{7x-5} = 2$

2. Вычислите пределы:

a)
$$\lim_{y \to a} (\sin \frac{y - a}{2} * tg \frac{\pi y}{2a}); 6) \lim_{x \to 0} \frac{e^{\sin 2x} - e^{\sin x}}{arctgx}; B) \lim_{x \to \infty} (\frac{x^2 - 2x + 1}{x^2 - 4x + 2})^x; \Gamma) \lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}; \pi) \lim_{x \to 3} \frac{\ln(x - 2)}{\cos x - \cos 3}$$

Самостоятельная работа №1 по теме «Непрерывность функции»

1. Исследуйте функцию на непрерывность, установите характер точек разрыва и постройте график:

$$f(x) = \begin{cases} \frac{1}{x}, x < 0, \\ x, 0 \le x < 2, \\ 2, 2 \le x < 5, \\ \sin(x - 5), x \ge 5. \end{cases}$$

2. Вычислите с точностью до 0,01 корень уравнения $\sqrt{x-1}+x-2=0$ на [1;2]. Определите графически количество действительных корней уравнения данного уравнения.

Рубежный контроль №2(контрольная работа №2)

Вариант № 0

1. Найдите производные функции:

a)
$$f(x) = \sqrt[3]{x + \sqrt{x}};$$
 e) $f(x) = \frac{5x}{arctg3x};$
b) $f(x) = \frac{1+\sin 2x}{1-\sin 2x};$ w) $f(x) = \frac{\sqrt{1+3x^2}}{x^2-x};$
b) $f(x) = 5\frac{arctg^2x}{x^2-x};$ 3) $f(x) = x\sqrt{1+x^2}, f''(x);$
c) $f(x) = x\sqrt{1+x^2}, f''(x);$
d) $f(x) = \frac{2t-t^2}{3t-t^3}, \frac{d^2y}{dx^2}.$
d) $f(x) = \frac{3x^5-x^2+x}{x^5-2};$

Домашняя контрольная работа

Вариант № 0

1. Вычислите пределы по правилу Лопиталя:

a)
$$\lim_{x\to 1} \frac{\sqrt{1+3x^2}-2}{x^2-x}$$
; 6) $\lim_{x\to 0} \frac{5x+7}{arctg3x}$

2. Исследуйте функции и постройте их графики.

a)
$$f(x) = \frac{x^3}{x^2 + 2x + 3}$$
; 6) $f(x) = x + \ln(x^2 - 4)$.

Рубежный контроль №3 (контрольная работа №3)

Вариант № 0

Вычислите интегралы:
a)
$$\int \frac{xdx}{\sqrt{3-49x^2}}$$
; б) $\int \frac{dx}{2\sqrt{(x+1)(x-8)}}$;
в) $\int (x+1) \cos 2x \, dx$; г) $\int \frac{x^4+x+4}{x^4+4x^2} \, dx$;
д) $\int ctg^4x dx$; e) $\int \frac{dx}{\left(1+\sqrt[4]{x}\right)^3\sqrt{x}}$;
ж) $\int \frac{x^3dx}{(9+x^2)^3}$; 3) $\int \frac{dx}{2\sin x+3\cos x+4}$.

Самостоятельная работа №2

Вариант № 0

- 1. Вычислите площадь фигуры, ограниченной кривой $\rho = 3 + \sin \varphi$.
- 2. Вычислите объем тела, ограниченного поверхностью $x^2 + 6y^2 + 4z^2 = 12$.
- 3. Вычислите длину кривой $\rho = 1 + \cos \varphi$.
- 4. Найдите площадь поверхности, образованной вращением вокруг оси ОУ кривой $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1.$
- 5. Найдите центр масс фигуры, ограниченной осью ОХ и одной аркой циклоиды $(x = a(t - \sin t),$ $(v = a(1 - \cos t).$

Рубежный контроль № 4 (контрольная работа №4)

Вариант №0

1. Установите сходимость ряда и найдите его сумму:

$$\frac{1}{1\cdot 4} + \frac{1}{2\cdot 5} + \frac{1}{3\cdot 6} + \dots + \frac{1}{n\cdot (n+3)} + \dots$$

2. Исследуйте на сходимость ряды:

a)
$$\frac{2}{3!} + \frac{3}{5!} + \frac{4}{7!} + \dots + \frac{n+1}{(2n+1)!} + \dots;$$

6)
$$\frac{1}{2ln2} + \frac{1}{3ln3} + \dots + \frac{1}{(n+1)\ln(n+1)} + \dots$$

6)
$$\frac{1}{2ln2} + \frac{1}{3ln3} + \dots + \frac{1}{(n+1)\ln(n+1)} + \dots;$$

B) $\frac{1}{1\cdot3\cdot5} - \frac{1}{3\cdot5\cdot7} + \frac{1}{5\cdot7\cdot9} - \dots + (-1)^{n+1} \frac{1}{(2n-1)(2n+1)(2n+3)} + \dots$

a)
$$\sin^4 \alpha + \frac{\sin^4 2\alpha}{2^4} + \frac{\sin^4 3\alpha}{3^4} + \dots + \frac{\sin^4 n\alpha}{n^4} + \dots$$
;

б)
$$arcsin1 + arcsin^2 \frac{1}{2} + \dots + arcsin^n \frac{1}{n} + \dots;$$

B)
$$1 + \frac{1}{3^3} + \frac{1}{5^3} + \frac{1}{7^3} + \cdots$$
;

B)
$$1 + \frac{1}{3^3} + \frac{1}{5^3} + \frac{1}{7^3} + \cdots;$$

 Γ) $1 - \frac{1}{\sqrt[3]{3}} + \frac{1}{\sqrt[3]{5}} - \cdots + (-1)^{n-1} \frac{1}{\sqrt[3]{2n-1}} + \cdots.$

- 4. Разложите в ряд по степеням x функцию $f(x) = x\sqrt{x+1}$.
- 5. Вычислите cos 18° с точностью до 0,001.

Рубежный контроль № 5(контрольная работа №5)

- 1) Найдите и изобразите область определения функции $z = \ln(y^2 x) + \sqrt{x}$.
- 2) Найдите $\frac{\partial z}{\partial t}$, $\frac{\partial z}{\partial s}$ и dz, если $z = 3xy + x^2t + y^3$, $x = 3t^2 + \sqrt{s}$, $y = \cos 2t + 2st$.
- 3) Вычислите приближенно $(2 \sqrt{0.98})^{2.03}$.
- 4) $u = \varphi(x) + \psi(y) + (x y) \cdot \psi'(y)$. Проверьте, что $(x y) \cdot \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial u}{\partial y}$, фи ψ дважды дифференцируемые функции.
- 5) Найдите первые и вторые частные производные неявной функциих = f(x,y), определяемой уравнением $x^3 - 2x^2z^2 + yz^3 = 0$, если f(1;1) = 1, в точке $M_0(1;1;1)$.
- 6) Из всех прямоугольных параллелепипедов, имеющих данную диагональ, найдите тот, объем которого наибольший.
- 7) Найдите наибольшее и наименьшее значения функции $f(x,y) = x^2 + 3y^2 x + 18y 4$ в области, удовлетворяющей системе неравенств $\begin{cases} 0 \le x \le 2, \\ -4 \le y \le 0. \end{cases}$

Рубежный контроль № 6(контрольная работа №6)

Вариант 0

1. Измените порядок интегрирования в интеграле: a) $\int_{-1}^{0} dx \int_{x+1}^{\sqrt{1-x^2}} f(x,y) \, dy;$ 6) $\int_{-2}^{1} dy \int_{y^2}^{4} f(x,y) \, dx.$

a)
$$\int_{-1}^{0} dx \int_{x+1}^{\sqrt{1-x^2}} f(x, y) dy$$

6)
$$\int_{-2}^{1} dy \int_{y^2}^{4} f(x, y) dx$$
.

- 2. Вычислите $\iint_D dx dy$ двумя способами; область D ограничена линиями y=2 -x, $y^2 = 4x + 4$.
- 3. Вычислите площадь фигуры, ограниченной кривой:

$$(x^2 + y^2)^3 = a^2(x^4 + y^4), a > 0.$$

4. Вычислите объем тела, ограниченного поверхностями:

$$x^2 + y^2 = 4$$
, $y + z = 2$, $z = 0$.

26

5. Найдите центр масс однородной фигуры, ограниченной линиями: $y = 2x^3$, $y^2 = 2x$.

Самостоятельная работа №3

Вариант 0

- 1. Вычислите $\oint_L 2x(y-1)dx + x^2dy$ по контуру фигуры, ограниченной линиями: $y = x^2, y = 9.$
- 2. Вычислите $\int_{(0;0)}^{(2;2)} (2xy 5y^3) dx + (x^2 15xy^2 + 6y) dy$ с помощью первообразной.
- 3. Вычислите с помощью криволинейного интеграла площадь, ограниченную аркой циклоиды: $\begin{cases} x = a(t \sin t), \\ y = a(1 \cos t) \end{cases}$ и осью Ox.

Рубежный контроль № 7(контрольная работа №7)

- 1. Вычислите $\iint_{(S)} (x+y) dy dz + (x-z) dz dx + (2y-2z) dx dy$, если (S): 2x-3y+2z + 6 = 0.
- 2. НайдитеU(x, y, z), если du = (y z)dx + (x z)dy + (-x y)dzи вычислите $\int_{(AB)} du$, если A(0;1;2), B(-1;-4;0).
- 3. Вычислите $\int_{(L)} xzdx yz^2 \, dy + xydz$, если(L) замкнутая $\begin{cases} x^2 y^2 + 2a^2 = z, \\ x^2 + y^2 = a^2. \end{cases}$ линия:

Рубежный контроль № 8(контрольная работа 8)

Вариант 0

- 1. Вычислите поток векторного поля $\vec{a} = (z x)\vec{i} + (z + x)\vec{j} + (x + 2y + z)\vec{k}$ через треугольник, вырезанный координатными плоскостями из плоскости 2x + y + 2z -2 = 0, в том направлении нормали к плоскости, которое образует с осью O_y острый
- 2. Вычислите циркуляцию векторного поля $\vec{a}=(y-x)\vec{i}+(z-y)\vec{j}+(x-z)\vec{k}$ вдоль окружности, получающейся при пересечении сферы $x^2 + y^2 + z^2 = 1$ и плоскости x + y + z = a и пробегаемой против хода часовой стрелки, если смотреть из точки M(0:0:2).
- $\vec{a} = x\vec{i} + y\vec{j} + z\vec{k}$ потенциальным. поле 3. Выясните, является циркуляцию поля \vec{a} вдоль окружности $x^2 + z^2 = 1$, пробегаемой против хода часовой стрелки, если смотреть из точки М(0;1;0).

Самостоятельная работа №4

Вариант 0

Разложите в тригонометрические ряды Фурье:

a)
$$f(x) = \begin{cases} x, & -\pi < x \le 0, \\ 0, & 0 < x < \pi, \end{cases}$$
 Ha $(-\pi; \pi)$;
6) $f(x) = \frac{\pi - x}{2}, x \in (0; 2\pi)$;

6)
$$f(x) = \frac{\pi - x}{2}, x \in (0; 2\pi)$$

в)
$$f(x) = \begin{cases} 0.3, & 0 < x < 0.5, \\ -0.3, & 0.5 < x < 1 \end{cases}$$
 только по синусам и только по косинусам; $f(x) = sian(\cos x)$:

$$\Gamma) f(x) = sign (\cos x);$$

д)
$$f(x) = x^2$$
, $x \in (a; a + 2l)$.

Материалы к экзамену

Примерный перечень теоретических вопросов для экзамена (І семестр)

1. Доказательство необходимости расширения множества рациональных чисел.

- 2. Аксиоматика множества действительных чисел.
- 3. Аксиома непрерывности действительных чисел. Доказательство теоремы Кантора о стягивающейся системе отрезков.
- 4. Модуль действительного числа и его свойства (с доказательством).
- 5. Доказательство теоремы о представлении всякой функции, определенной на множестве, симметричном относительно начала координат, в виде суммы четной и нечетной функций.
- 6. Доказательство свойств сходящихся последовательностей.
- 7. Доказательство теоремы о существовании предела у монотонной ограниченной последовательности. Примеры применения этой теоремы.
- 8. Доказательство свойств бесконечно малых последовательностей.
- 9. Доказательство теоремы о связи между бесконечно малой и бесконечно большой последовательностями.
- 10. Доказательство теорем об арифметических свойствах пределов последовательностей.
- 11. Доказательство эквивалентности определений функции в точке по Гейне и Коши.
- 12. Доказательство критерия существования предела функции в точке (связь предела с односторонними пределами).
- 13. Доказательство локальных свойств функции, имеющей конечный предел в точке (ограниченность, сохранение знака в окрестности точки).
- 14. Доказательство свойств функций, имеющих конечный предел в точке (единственность предела, предельный переход в равенстве и неравенстве, предел промежуточной функции).
- 15. Доказательство свойств бесконечно малых функций.
- 16. Доказательство теорем об арифметических свойствах пределов функций.
- 17. Доказательство первого замечательного предела: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ и следствий из него.
- 18. Доказательство второго замечательного предела: $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$ и следствий из него.
- 19. Доказательство теорем об арифметических свойствах непрерывных функций.
- 20. Доказательство теоремы о непрерывности композиции непрерывных функций. Переход к пределу под знаком непрерывной функции.
- 21. Доказательство локальных свойств функции, непрерывной в точке.
- 22. Точки разрыва функции и их классификация. Исследование функции на непрерывность и построение схемы ее графика.
- 23. Доказательство теорем о свойствах функций, непрерывных на отрезке. Применение теорем для решения задач.
- 24. Доказательство необходимого условия, необходимого и достаточного условия дифференцируемости функции в точке.
- 25. Доказательство правил дифференцирования суммы, произведения и частного функций.
- 26. Вывод формул дифференцирования (таблица производных).
- 27. Вывод формулы для дифференцирования сложной функции.
- 28. Вывод формулы для дифференцирования обратной функции.
- 29. Логарифмическое дифференцирование. Вывод формулы для дифференцирования показательно-степенной функции.
- 30. Производные высших порядков. Доказательство свойств производных *n*-го порядка.
- 31. Дифференциал функции. Вывод формулы для применения дифференциала в приближенных вычислениях.
- 32. Дифференциал сложной функции. Доказательство свойства инвариантности дифференциала первого порядка.

- 33. Дифференциалы высших порядков. Доказательство нарушения свойства инвариантности у дифференциала второго порядка.
- 34. Доказательство теоремы о дифференцируемых функциях (Ферма, Ролля, Лагранжа, Коши).
- 35. Доказательство критерия постоянства функции на промежутке.
- 36. Доказательство достаточного условия строгого возрастания (убывания) функции на промежутке.
- 37. Доказательство правила Лопиталя для раскрытия неопределенности $\binom{0}{0}$, $x \to a+$, a- особая точка.
- 38. Доказательство необходимых условий существования экстремума функции в точке.
- 39. Доказательство достаточного условия существования экстремума функции в точке (по знаку первой и второй производной).
- 40. Доказательство достаточного условия выпуклости (вогнутости) функции на промежутке.
- 41. Доказательство необходимых условий существования точки перегиба графика функции.
- 42. Доказательство достаточного условия существования точки перегиба графика функции.
- 43. Обоснование существования асимптот у графика функции.
- 44. Общая схема исследования функции и построение ее графика.
- 45. Параметрическое задание функций. Вывод формул для нахождения производных Іи ІІ порядка параметрически заданных функций.

Перечень умений и навыков, необходимых для сдачи экзамена (2 семестр).

- 1) Вычисление неопределенных интегралов: правила интегрирования; замена переменной; интегрирование по частям; интегрирование рациональных функций; интегрирование тригонометрических функций.
- 2) Вычисление определенных интегралов: формула Ньютона-Лейбница; замена переменной; интегрирование по частям.
- 3) Вычисление геометрических величин: площадь плоской фигуры; объем тела; длина дуги; площадь поверхности вращения.
- 4) Вычисление физических величин: статические моменты дуг и пластинок; координаты центра масс дуг и пластинок; работа; давление.
- 5) Исследование рядов на сходимость.
- 6) Исследование функциональных последовательностей и рядов на равномерную сходимость.
- 7) Разложение функций в степенные ряды.
- 8) Использование свойств рядов для нахождения их сумм.
- 9) Применение рядов в приближенных вычислениях.

Примерный перечень теоретических вопросов для экзамена (2семестр)

- 1. Первообразная функция, ее основное свойство. Неопределенный интеграл, свойства, вытекающие из его определения.
- 2. Таблица основных интегралов.
- 3. Правила интегрирования.
- 4. Методы интегрирования по частям и заменой переменной.
- 5. Интегрирование простейших рациональных дробей I-IV типов. Рекуррентная формула для вычисления $\int \frac{dx}{(x^2+a^2)^n}$, $n \neq 1$.
- 6. Метод неопределенных коэффициентов для разложения правильных рациональных дробей на сумму простейших.

- 7. Интегрирование иррациональных функций.
- 8. Интегрирование тригонометрических выражений.
- 9. Понятие определенного интеграла, его геометрический смысл. Необходимое условие интегрируемости функции.
- 10. Необходимое и достаточное условие существования определенного интеграла.
- 11. Классы интегрируемых функций.
- 12. Свойства определенного интеграла.
- 13. Интеграл с переменным верхним пределом, его свойства. Формула Ньютона-Лейбница для вычисления определенных интегралов.
- 14. Интегрирование по частям и подстановкой в определенном интеграле.
- 15. Вычисление площади плоской фигуры в декартовых и полярных координатах.
- 16. Вычисление объема тела по площадям параллельных сечений и объема тела вращения.
- 17. Вычисление длины дуги в декартовых и полярных координатах.
- 18. Вычисление площади поверхности вращения в декартовых и полярных координатах.
- 19. Физические приложения определенного интеграла: статические моменты дуг и пластинок; координаты центра масс дуг и пластинок; работа переменной силы; давление на поверхность.
- 20. Необходимое условие сходимости ряда. Сложение рядов. Умножение ряда на число. Сходимость ряда и его остатка.
- 21. Геометрический ряд и его сходимость. Гармонический ряд и его расходимость.
- 22. Критерий сходимости ряда с положительными членами.
- 23. Достаточные признаки сходимости рядов с положительными членами: сравнения, Даламбера, Коши, интегральный.
- 24. Теорема Лейбница о сходимости знакочередующегося ряда и ее применение для оценки погрешности приближенного вычисления сумм рядов.
- 25. Свойства абсолютно и условно сходящихся рядов.
- 26. Достаточное условие для сходимости знакопеременного ряда.
- 27. Свойства равномерно сходящихся функциональных последовательностей.
- 28. Свойства равномерно сходящихся функциональных рядов.
- 29. Теорема Абеля. Вид области сходимости степенного ряда. Нахождение области сходимости степенного ряда.
- 30. Свойства степенных рядов.
- 31. Ряд Тейлора. Коэффициенты Тейлора. Необходимое условие разложимости функции в степенной ряд.
- 32. Формула Тейлора для многочлена и произвольной функции с дополнительным членом в одной из форм.
- 33. Необходимое и достаточное условие разложимости функции в степенной ряд.
- 34. Разложение в ряд Маклорена функций: e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^{\alpha}$.
- 35. Косвенные приемы и методы разложения функций в степенные ряды.

Перечень практических умений для сдачи экзамена (III семестр).

- 1) Нахождение пределов функций нескольких переменных.
- 2) Исследование функций на непрерывность.
- 3) Нахождение частных производных и дифференциалов I порядка.
- 4) Нахождение частных производных и дифференциалов высших порядков.
- 5) Дифференцирование сложной функции.
- 6) Применение дифференциала в приближенных вычислениях.
- 7) Нахождение производных неявно заданных функций.
- 8) Исследование функций на экстремумы.
- 9) Исследование функций на условные экстремумы.
- 10) Нахождение наименьшего и наибольшего значений функции в области.

- 11) Решение задач на оптимизацию.
- 12) Вычисление двойного, тройного, криволинейных интегралов Іи ІІ рода.
- 13) Приложения двойного, тройного, криволинейных интегралов для вычисления геометрических и физических величин.

Примерный перечень теоретических вопросов для экзамена (Зсеместр)

- 1) Доказательство свойств функций, непрерывных в точке.
- 2) Доказательство свойств функций, непрерывных на замкнутых ограниченных областях.
- 3) Доказательство необходимых условий дифференцируемости в точке.
- 4) Доказательство достаточного условия дифференцируемости функции в точке.
- 5) Вывод формул для дифференцирования сложной функции.
- 6) Доказательство инвариантности формы дифференциала функции.
- 7) Вывод формулы для применения дифференциала в приближенных вычислениях.
- 8) Вывод формул для дифференциала II, III, ..., n-го порядков.
- 9) Доказательство нарушения инвариантности формы у дифференциалов высших порядков.
- 10) Вывод формулы Тейлора для функции двух переменных.
- 11) Способы дифференцирования неявных функций одной и нескольких переменных.
- 12) Доказательство достаточного условия существования производной по направлению.
- 13) Вывод уравнений касательной плоскости и нормали к поверхности.
- 14) Доказательство необходимых условий экстремума функции в точке.
- 15) Достаточные условия экстремума функции в точке и их применение для исследования функций.
- 16) Способы нахождения условного экстремума функции.
- 17) Нахождение наименьшего и наибольшего значений функции в области и решение текстовых задач на экстремум.
- 18) Доказательство необходимого условия существования двойного интеграла.
- 19) Доказательство необходимого и достаточного условия существования двойного интеграла.
- 20) Доказательство интегрируемости непрерывной функции двух переменных.
- 21) Доказательство свойств двойного интеграла.
- 22) Вывод формулы замены переменных в двойном интеграле. Двойной интеграл в полярных координатах.
- 23) Вывод формул для геометрических приложений двойного интеграла: вычисление площади плоской фигуры; вычисление объема тела; вычисление площади поверхности.
- 24) Вывод формул для физический приложений двойного интеграла: вычисление массы пластинки; статических моментов пластинки; координат центра масс пластинки; моментов инерции пластинки.
- 25) Вывод формул для вычисления двойного интеграла по прямоугольной и произвольной областям.
- 26) Вывод формул для приложений тройного интеграла: вычисление объема тела; вычисление массы тела; вычисление статических моментов тела; координат центра масс тела; моментов инерции тела.
- 27) Вывод формул для вычисления тройного интеграла в цилиндрических и сферических координатах.
- 28) Вывод формулы для вычисления криволинейного интеграла Ірода (по длине дуги).
- 29) Вывод формул для приложений криволинейного интеграла Ірода: вычисление длины дуги; вычисление массы дуги; вычисление статических моментов дуги; координат центра масс дуги; моментов инерции дуги.
- 30) Доказательство существования криволинейного интеграла Прода (по координатам).

- 31) Вывод формул для вычисления криволинейного интеграла Прода.
- 32) Вывод формулы Грина и формулы для вычисления площади плоской фигуры.
- 33) Вывод формулы для вычисления работы плоского силового поля.
- 34) Доказательство независимости криволинейного интеграла от формы пути интегрирования.
- 35) Условие полного дифференциала и восстановление функции по ее полному дифференциалу.

Примерный перечень теоретических вопросов для экзамена (3 семестр)

- 1. Поверхностные интегралы 1 рода: понятие, сведение к двойному.
- 1. Вычисление величин с помощью поверхностных интегралов 1 рода.
- 2. Поверхностные интегралы 2 рода: понятие, сведение к двойному.
- 3. Формула Стокса и ее применение для исследования криволинейных интегралов в пространстве.
- 4. Формула Остроградского.
- 5. Производная скалярного поля по направлению, ее связь с дифференцируемостью функции в точке.
- 6. Градиент скалярного поля и его связь с производной по направлению.
- 7. Поток векторного поля через поверхность. Формула Остроградского в векторной форме.
- 8. Циркуляция векторного поля. Формула Стокса в векторной форме.
- 9. Дивергенция, ротор векторного поля, их применение для характеристики векторных полей.
- 10. Несобственные интегралы с бесконечными пределами интегрирования, их свойства, сходимость.
- 11. Несобственные интегралы от неограниченных функций, их свойства, сходимость.
- 12. Теорема о равномерной сходимости функции f(x, y) к предельной функции.
- 13. Теорема о непрерывности предельной функции.
- 14. Теорема о предельном переходе под знаком интеграла.
- 15. Теорема о дифференцировании под знаком интеграла.
- 16. Теорема об интегрирование под знаком интеграла.
- 17. Нормированные и ортогональные функции. Нормированные и ортогональные системы функций. Доказать ортогональность основной тригонометрической системы функций на $[-\pi,\pi]$.
- 18. Теорема о разложении функций в тригонометрический ряд Фурье (условия Дирихле).
- 19. Сдвиг сегмента разложения. Привести пример на разложение функции в тригонометрический ряд Фурье с использование сдвига сегмента разложения.
- 20. Изменение длины сегмента разложения. Привести пример на разложение функции в тригонометрический ряд Фурье на [-l;l], выбрав конкретное значение l.
- 21. Четные и нечетные функции. Разложение в тригонометрический ряд Фурье четных и нечетных функций.
- 22. Разложение функции, заданной на $[0;\pi]$, в тригонометрический ряд Фурье только по синусам (только по косинусам).
- 23. Приближение функций в среднем. Экстремальное свойство коэффициентов Фурье. Неравенство Бесселя.
- 24. Сходимость в среднем, ее связь с равномерной сходимостью последовательности функций.
- 25. Необходимое и достаточное условие сходимости ряда Фурье функции f(x) в среднем. Равенство Парсеваля.
- 26. Полнота и замкнутость ортогональных систем функций. Связь между полнотой и замкнутостью систем функций.

27. Характер сходимости тригонометрических рядов Фурье.

Перечень практических вопросов выносимых на экзамен (IV семестр).

- 1. Вычисление поверхностных интегралов 1 и 2 рода (непосредственно и с использованием формулы Остроградского).
- 2. Применение формулы Стокса для вычисления криволинейных интегралов в пространстве.
- 3. Восстановление функции по ее полному дифференциалу.
- 4. Независимость криволинейного интеграла от формы пути интегрирования; вычисление криволинейных интегралов с помощью первообразной.
- 5. Вычисление потока, дивергенции, ротора, циркуляции векторного поля.
- 6. Вычисление геометрических и физических величин с помощью поверхностных интегралов 1 и 2 рода.
- 7. Разложение функций в тригонометрические ряды Фурье. Использование разложений для нахождения сумм рядов.
- 8. Исследование интегралов на сходимость.
- 9. Вычисление несобственных интегралов.
- 10. Применение несобственных интегралов для вычисления величин (площадь, объем).

6.5 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Полный банк заданий для текущего, рубежных контролей и промежуточной аттестации по дисциплине, показатели, критерии, шкалы оценивания компетенций, методические материалы, определяющие процедуры оценивания образовательных результатов, приведены в учебно-методическом комплексе дисциплины.

7. Основная и дополнительная учебная литература 7.1 Основная литература

- 1. Краткий курс математического анализа. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной. Ряды: Учебник / Кудрявцев Л.Д., 4-е изд. М.:ФИЗМАТЛИТ, 2015. 444 с.- Доступ из ЭБС «znanium.com»
- 2. Краткий курс математического анализа. Т. 2. Дифференциальное и интегральное исчисления функций многих переменных. Гармонический анализ / Кудрявцев Л.Д., 3-е изд. М.:ФИЗМАТЛИТ, 2003. 424 с. Доступ из ЭБС «znanium.com»

7.2 Дополнительная литература

- 1. Берман Γ . Н. Сборник задач по курсу математического анализа: учебное пособие для вузов / Γ . Н. Берман. 20-е изд. Москва: Наука, 1985. 384 с.
- 2. Математический анализ: сборник задач с решениями: Учебное пособие / В.Г. Шершнев. М.: НИЦ ИНФРА-М, 2015. 164 c.http://znanium.com/catalog/product/501529

8. Учебно- методическое обеспечение самостоятельной работы обучающихся

- 1. Методические указания и контрольные задания по курсу математического анализа (специальность 010101 математика). Курган, 1995г.
- 2. Практические занятия по курсу «Математический анализ» для студентов I курса (I семестр). Курган, 2009. /Составил Мухин А.Е.
- 3. Педагогические тесты достижений по разделу «Введение в анализ» курса «Математический анализ». Курган, 2009. /Составил Мухин А.Е.
- 4. Педагогические тесты достижений по разделу «Дифференциальное исчисление функций одной переменной». Курган, 2010. /Составил Мухин А.Е.
- 5. Математический анализ: Методические указания к практическим занятиям (II семестр). Курган, 2010. /Составил Мухин А.Е.
- 6. Интегралы по поверхности. Элементы теории поля. Интегралы, зависящие от параметра. Ряды Фурье: Методические указания к изучению разделов математического анализа. Курган, 2005. /Составил Мухин А.Е.

9. Интернет-ресурсы необходимые для освоения дисциплины

	1 1 11	
№	Интернет-ресурс	Краткое описание
1	http://www.edu.ru/	Федеральный портал «Российское образование»
2	<u>highermath.ru</u>	Курс высшей математики (теория)
3	mathelp.spb.ru	Лекции по высшей математике
4	http://elementy.ru	Энциклопедический сайт
5	http://ru.wikipedia.org	Энциклопедия Википедия
6	http://botaniks.ru/matem.php	Алгоритмы решения основных задач математического анализа
7	http://www.msu.ru	Сайт Московского государственного университета им. М.В.Ломоносова

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение по реализации дисциплины осуществляется в соответствии с требованиями ФГОС ВО по данной образовательной программе.

11. ДЛЯ СТУДЕНТОВ, ОБУЧАЮЩИХСЯ С ИСПОЛЬЗОВАНИЕМ ДИСТАНЦИОННЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

При использовании электронного обучения и дистанционных образовательных технологий (далее ЭО и ДОТ) занятия полностью или частично проводятся в режиме онлайн. Объем дисциплины и распределение нагрузки по видам работ соответствует п. 4.1. Распределение баллов соответствует п. 6.2 либо может быть изменено в соответствии с решением кафедры. В случае перехода на ЭО и ДОТ в процессе обучения. Решение кафедры об используемых технологиях и системе оценивания достижений

обучающихся принимается с учетом мнения ведущего преподавателя и доводится до сведения обучающихся.

Аннотация

к рабочей программе дисциплины «Математический анализ» образовательной программы высшего профессионального образования — программы бакалавриата

01.03.01-Математика

направленность: Математическое и программное обеспечение экономической деятельности

Трудоемкость дисциплины: 24зач.ед.(864 академических часа)

Семестры: 1,2,3,4

Формы промежуточной аттестации: 4 экзамена

Содержание дисциплины

Основные понятия математического анализа и их свойства, основные объекты и методы математического анализа, их приложения в других отраслях знания и для решения практических задач.