Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» (КГУ)

Кафедра «Автоматизация производственных процессов»

	УТВЕРЖДАЮ: Первый проректор
Змызгова Т.Р. /	/
«	> 2024 г.

РАБОЧАЯ ПРОГРАММА учебной дисциплины

АВТОМАТИЗИРОВАННЫЕ КОМПЛЕКСЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ

образовательной программы высшего образования — программы магистратуры

20.04.01 – Техносферная безопасность

Направленность: Безопасность жизнедеятельности в техносфере

Форма обучения: заочная

Рабочая программа дисциплины «Автоматизированные комплексы обеспечения безопасности» составлена в соответствии с учебными планами по программе магистратуры «Техносферная безопасность» («Безопасность жизнедеятельности в техносфере»), утвержденными:
- для заочной формы обучения «28» июня 2024 года.

Рабочая программа одобрена на заседании кафедры «Автоматизация производственных процессов» «_2__»сентября 2024 г., протокол № __1_.

Рабочую программу составил

Заведующий кафедрой

«Автоматизация производственных процессов»

И.А.Иванова

Согласовано:

Заведующий кафедрой

«Автоматизация производственных процессов»

И.А.Иванова

Заведующий кафедрой

«Экология и безопасность жизнедеятельности»

С.К. Белякин

Руководитель

программы магистратуры

Н.К. Смирнова

Специалист по учебно-методической работе

Учебно-методического отдела

Г.В. Казанкова

Начальник

управления образовательной деятельности

И.В.Григоренко

1. ОБЪЕМ ДИСЦИПЛИНЫ Всего: 4 зачётных единицы трудоёмкости (144 академических часа)

Заочная форма обучения

Вид учебной работы	На всю дис-	Семестр
	циплину	4
Аудиторные занятия (контактная	8	8
работа с преподавателем), всего		
часов		
в том числе:		
Лекции	4	4
Лабораторные работы	4	4
Самостоятельная работа, всего	136	136
часов в том числе:		
Контрольная работа	18	18
Подготовка к экзамену	27	27
Другие виды самостоятельной работы	91	91
Вид промежуточной аттестации	Экзамен	Экзамен
Общая трудоемкость дисциплины и	144	144
трудоемкость по семестрам:		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Автоматизированные комплексы обеспечения безопасности» относится к части, формируемой участниками образовательных отношений дисциплин по выбору цикла Б1.В.ДВ.2. Является дисциплиной по выбору обучающегося.

Изучение дисциплины базируется на результатах обучения, сформированных при изучении следующих дисциплин:

- Мониторинг и экспертиза безопасности объектов;
- Контроль, прогнозирование, управление безопасностью;
- Пожарная безопасность в организации.

Результаты обучения по дисциплине необходимы для инженерной деятельности при проектировании средств и систем автоматизации, выполнения выпускной квалификационной работы.

Требования к входным знаниям, умениям, навыкам и компетенциям:

- знание основных законов естественнонаучных дисциплин; методов моделирования, теоретического и экспериментального исследования; правил оформления конструкторской документации;
- умение использовать современные информационные технологии, технику, прикладные программные средства; применять свои знания к решению практических задач;
- владение навыками работы с компьютерной техникой, электротехнической и контрольно-измерительной аппаратурой, электронными устройствами;
- освоение следующих компетенций на уровне не ниже порогового: ПК-5 (способность реализовывать на практике в конкретных условиях известные мероприятия (методы) по защите человека в техносфере), ПК-7 (способность к реализации новых методов повышения надежности и устойчивости технических объектов, поддержания их функционального назначения), ДПК-3 (способность руководить службой пожарной безопасности организации (структурных подразделений, филиалов)).

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Целью освоения дисциплины «Автоматизированные комплексы обеспечения безопасности» является приобретение студентами знаний о современных методах создания автоматизированных комплексов обеспечения безопасности.

Задачами дисциплины являются: ознакомление с областью применения компонентов автоматизации при разработке и создании устройств и комплексов, обеспечивающих защиту человека в техносфере. Изучение принципов работы основных элементов автоматизированных систем, особенностей их проектирования и разработки алгоритмов работы для обеспечения безопасности технических систем.

Компетенции, формируемые в результате освоения дисциплины:

- способность планировать. разрабатывать и совершенствовать системы управления техносферной безопасностью(ПК-1);
- способность разрабатывать и реализовывать организационнотехнические мероприятия в области безопасности, организовывать и внедрять систему менеджмента техногенного и профессионального риска на предприятиях и в организациях(ПК-7);

В результате изучения дисциплины обучающийся должен:

- Уметь реализовывать на практике в конкретных условиях известные автоматизированные комплексы обеспечения безопасности человека в техносфере (ПК-7);
- Знать методы повышения надежности и устойчивости технических объектов, поддержания их функционального назначения посредством применения мехатронных систем (ПК-1, ПК-7);
- Уметь применять навыки синтеза интеллектуальных методов управления техническими системами для обеспечения пожарной безопасности организации (ПК-1).

Владеть: системой менеджмента техногенного и профессионального риска на предприятиях и в организациях (ПК-1.ПК-7)

Индикаторы и дескрипторы части соответствующей компетенции, формируемой в процессе изучения дисциплины «Автоматизированные комплексы обеспечения безопасности», оцениваются при помощи оценочных средств.

Планируемые результаты обучения по дисциплине «Автоматизированные комплексы обеспечения безопасности», индикаторы достижения компетенций ПК-1, ПК-7,перечень оценочных средств

No	Код	Наименование	Код	Планируемые	Наименование	
Π/	индикатора	индикатора	планируемог	результаты	оценочных	
П	достижения	достижения	о результата	обучения	средств	
	компетенци	компетенции	обучения			
	И					
1.	ИД-1 _{ПК1}	Знать: методы	3 (ИД-1 _{ПК1})	Знает: методы	Вопросы для	
		повышения		повышения	сдачи	
		надежности и		надежности и	экзамена	
		устойчивости		устойчивости		
		технических		технических		
		объектов,		объектов,		
		поддержания их		поддержания их		
		функционального		функционального		
		назначения		назначения		
		посредством		посредством		
		применения		применения		
		мехатронных		мехатронных		
		систем		систем		
2.	ИД-2 _{ПК1}	Уметь: применять	У (ИД-2 _{ПК1)}	Умеет:	Вопросы для	

		навыки синтеза		примоняті	CHOTH DESOMBLE
				применять навыки синтеза	сдачи экзамена
		интеллектуальны			
		х методов		интеллектуальны	
		управления		х методов	
		техническими		управления	
		системами для		техническими	
		обеспечения		системами для	
		пожарной		обеспечения	
		безопасности		пожарной	
		организации		безопасности	
	11H 0		D (HH 2	организации	7
3.	ИД-3 _{ПК-1}	Владеть:	В (ИД-3 _{ПК1})	Владеет:	Вопросы для
		системой		системой	сдачи экзамена
		менеджмента		менеджмента	
		техногенного и		техногенного и	
		профессионально		профессионально	
		го риска на		го риска на	
		предприятиях и в		предприятиях и в	
		организациях		организациях	
4.	ИД-1 _{ПК7}	Знать:методы	3 (ИД-1 _{ПК7})	Знает: методы	Вопросы для
		повышения		повышения	сдачи
		надежности и		надежности и	экзамена
		устойчивости		устойчивости	
		технических		технических	
		объектов,		объектов,	
		поддержания их		поддержания их	
		функционального		функционального	
		назначения		назначения	
		посредством		посредством	
		применения		применения	
		мехатронных		мехатронных	
		систем		систем	
5.	ИД-2 _{ПК7}	Уметь:	У (ИД-2 _{ПК7)}	Умеет:	Вопросы для
		реализовывать на	,	реализовывать на	сдачи экзамена
		практике в		практике в	
		конкретных		конкретных	
		условиях		условиях	
		известные		известные	
		автоматизирован		автоматизирован	
		ные комплексы		ные комплексы	
		обеспечения		обеспечения	
		безопасности		безопасности	
		человека в		человека в	
		техносфере		техносфере	
6.	ИД-3 _{ПК-7}	Владеть:	В (ИД-3 _{ПК7})	Владеет:	Вопросы для
	, , , , , , , , , , , , , , , , , , , ,	системой	, , , , , , , , , , , , , , , , , , , ,	системой	сдачи экзамена
		менеджмента		менеджмента	, ,
		техногенного и		техногенного и	
		профессионально		профессионально	
		го риска на		го риска на	
		предприятиях и в		предприятиях и в	
		организациях		организациях	
		_ организациих	l	организациях	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Учебно-тематический план

Заочная форма обучения

Номер раздела,	Наименование раздела,	Количество часов контактной работы с преподавателем	
темы	темы	Лекции	Лабораторн ые работы
1	Введение	0,5	-
2	Основные направления автоматизации для обеспечения безопасности техносферы	1	-
3	Микроконтроллеры в комплексах обеспечения безопасности	1	2
4	Применение программируемых логических контроллеров в комплексах обеспечения безопасности	0,5	2
5	Микропроцессорные системы в комплексах обеспечения безопасности	± 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6	Перспективные задачи автоматизации сферы обеспечения безопасности	0,5	-
	Всего:	4	4

4.2. Содержание лекционных занятий

Тема 1. Введение

История и предпосылки применения автоматизации в техносферной безопасности. Уровни интеграции автоматизированных компонентов в систему обеспечения безопасности. Влияние общего уровня развития техники и электроники на безопасность технических систем.

Тема 2. Основные направления автоматизации для обеспечения безопасности техносферы

Системы сбора и анализа больших объёмов информации. Многофакторные автоматизированные системы обеспечения безопасности. Комплексы, осуществляющие видеозапись и распознавание угроз и нарушения в сфере безопасности.

Тема 3. Микроконтроллеры в комплексах обеспечения безопасности

Особенности применения микроконтроллеров. Разработка компонентов систем обеспечения безопасности на базе микроконтроллера. Состояние

современного распространения микроконтроллерной техники в техносферной безопасности.

Тема 4. Применение программируемых логических контроллеров в комплексах обеспечения безопасности

Программируемые логические контроллеры. Особенности применения в промышленности, ЖКХ и системах безопасности. Выбор датчиков и исполнительных элементов для автоматизированных комплексов обеспечения безопасности, построенных на базе ПЛК.

Тема 5. Микропроцессорные системы в комплексах обеспечения безопасности

Особенности применения микропроцессоров в комплексах обеспечения безопасности. Разработка систем обеспечения безопасности на базе микропроцессора. Отличия микропроцессоров от микроконтроллеров и ПЛК.

Тема 6. Перспективные задачи автоматизации сферы обеспечения безопасности

Применение искусственных нейронных сетей и алгоритмов самообучения. Нечёткая логика в сфере обеспечения безопасности. Многофакторные интеллектуальные датчики и сенсоры.

4.4. Лабораторные занятия

Номер раздела, темы	Наименование раздела, темы	Наименование лабораторной работы	Норматив времени, час. Заочная форма обучения
3	Микроконтроллеры в комплексах обеспечения безопасности	Система сигнализации и сбора информации с датчиков безопасности.	2
4	Применение программируемых логических контроллеров в комплексах обеспечения безопасности	Контроль поддержания температурного режима и индикация состояния системы	2
		Всего:	4

4.5. Контрольная работа (для заочной формы обучения)

Контрольная работа проводится в виде представления и защиты подготовленного обучающимся в ходе самостоятельной подготовки учебного проекта по тематике «Проектирование системы управления

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При прослушивании лекций рекомендуется в конспекте отмечать все важные моменты, на которых заостряет внимание преподаватель, в частности те, которые направлены на качественное выполнение соответствующих лабораторных работ (для заочной формы).

Преподавателем запланировано использование при чтении лекций технологии учебной дискуссии. Поэтому рекомендуется фиксировать для себя интересные моменты с целью их активного обсуждения на дискуссии в конце лекции.

Залогом качественного выполнения лабораторных работ является самостоятельная подготовка к ним накануне путем повторения материалов лекций. Рекомендуется подготовить вопросы по неясным моментам и обсудить их с преподавателем в начале работы.

Выполнение самостоятельной работы подразумевает самостоятельное изучение разделов дисциплины, подготовку к лабораторным работам (для заочной формы обучения), выполнение контрольной работы (для заочной формы обучения),подготовку к экзамену.

Рекомендуемая трудоемкость самостоятельной работы представлена в таблице:

Рекомендуемый режим самостоятельной работы

Рекомендуемый режим самостоятельной расоты			
Наименование		Рекомендуемая трудоемкость, акад. час.	
вида самостоятельной работы		Заочная форма обучения	
Самостоятельное изучение тем дисциплины:		87	
Введение		12	
Основные направления автоматизации для обеспечения безопасности техносферы		15	
Микроконтроллеры в комплексах обеспечения безопасности		15	
Применение программируемых логических контроллеров в комплексах обеспечения безопасности		15	
Микропроцессорные системы в комплексах обеспечения безопасности		15	
Перспективные задачи автоматизации сферы обеспечения безопасности		15	
Подготовка к рубежным контролям (по 2 ч. к 1 и 2 рубежному контролю)		-	
Подготовка к практическим занятиям (по 2 ч. на занятие)		4	
Выполнение контрольной работы		18	
Подготовка к экзамену		27	
Всего:		136	

Приветствуется выполнение разделов самостоятельной работы в компьютерном классе кафедры «Экология и безопасность жизнедеятельности».

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

6.1. Перечень оценочных средств

- 1. Контрольная работа (для заочной формы)
- 2. Отчеты обучающихся по лабораторным работам
- 3. Банк заданий и вопросов к экзамену

6.2. Процедура оценивания результатов освоения дисциплины

Итоговая аттестация работы обучающихся по дисциплине «Автоматизированные комплексы обеспечения безопасности» производится по билетам, содержащим два вопроса. Время, отводимое обучающемуся на подготовку и устный ответ составляет 1 астрономический час.

Результаты экзамена заносятся преподавателем в экзаменационную ведомость, которая сдается в организационный отдел института в день экзамена, а также выставляются в зачетную книжку обучающегося.

6.3Примеры оценочных средств для экзамена

Примерный список вопросов к экзамену

- 1. История и предпосылки применения автоматизации в техносферной безопасности.
- 2. Уровни интеграции автоматизированных компонентов в систему обеспечения безопасности.
- 3. Влияние общего уровня развития техники и электроники на безопасность технических систем.
 - 4. Системы сбора и анализа больших объёмов информации.
 - 5. Многофакторные автоматизированные системы обеспечения безопасности.
- 6. Комплексы, осуществляющие видеозапись и распознавание угроз и нарушения в сфере безопасности.
- 7. Микроконтроллеры в комплексах обеспечения безопасности. Особенности применения микроконтроллеров.
- 8. Разработка компонентов систем обеспечения безопасности на базе микроконтроллера.
- 9. Состояние современного распространения микроконтроллерной техники в техносферной безопасности.
- 10. Применение программируемых логических контроллеров в комплексах обеспечения безопасности. Программируемые логические контроллеры.
- 11. Особенности применения в промышленности, ЖКХ и системах безопасности.
- 12. Выбор датчиков и исполнительных элементов для автоматизированных комплексов обеспечения безопасности, построенных на базе ПЛК.

- 13. Особенности применения микропроцессоров в комплексах обеспечения безопасности.
 - 14. Разработка систем обеспечения безопасности на базе микропроцессора.
- 15. Перспективные задачи автоматизации сферы обеспечения безопасности. Применение искусственных нейронных сетей и алгоритмов самообучения.
- 16. Перспективные задачи автоматизации сферы обеспечения безопасности. Многофакторные интеллектуальные датчики и сенсоры.

Контрольная работа для обучающихся заочной формы обучения

Контрольная работа проводится в виде представления и защиты подготовленного студентом в ходе самостоятельной подготовки учебного проекта по тематике «Проектирование системы управления автоматизированным комплексом обеспечения безопасности» по индивидуальным исходным данным.

6.4 Фонд оценочных средств

Полный банк заданий для текущего 1111 и промежуточной аттестации по дисциплине, показатели, критерии, шкалы оценивания компетенций, методические материалы, определяющие процедуры оценивания образовательных результатов, приведены в учебно-методическом комплексе дисциплины.

7. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ УЧЕБНАЯ ЛИТЕРАТУРА 7.1. Основная учебная литература

- 1. Проектирование автоматизированных систем производства [Электронный ресурс]: Учебное пособие / В.Л. Конюх. Москва: КУРС: НИЦ ИНФРА-М, 2014. 312 с.: 60х90 1/16.— Доступ из ЭБС «znanium.com»
- 2. Микропроцессорные системы [Электронный ресурс] : Учебник / В.В. Гуров. Москва: НИЦ ИНФРА-М, 2016. 336 с.: 60х90 1/16.— Доступ из ЭБС «znanium.com»
- 3. Микроконтроллеры для систем автоматики [Электронный ресурс]: Учебное пособие / Водовозов А.М. Вологда: Инфра-Инженерия, 2016. 164 с. Доступ из ЭБС «znanium.com»

7.2. Дополнительная учебная литература

1. Программные и аппаратные средства информатики [Электронный ресурс] / Р.Ю. Царев, А.В. Прокопенко, А.Н. Князьков - Красноярск: СФУ, 2015. - 160 с.— Доступ из ЭБС «znanium.com»

8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

1. Карпов Е.К. Методические указания к выполнению контрольной работы для студентов заочной формы обучения по курсу «Автоматизированные комплексы обеспечения безопасности» // Е.К. Карпов. Курган: КГУ. 2019. – 16 с.

2. Карпов Е.К. Методические указания к комплексу лабораторных работ по курсу «Автоматизированные комплексы обеспечения безопасности» // Е.К. Карпов. Курган: КГУ. 2019.-16 с.

9. Информационные технологии, программное обеспечение и информационные справочные системы

- 1. ЭБС «Лань»
- 2.ЭБС «Консультант студента»
- 3. 3 GC «Znanium.com»
- 4.» Гарант»- справочно-правовая система

10.Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение по реализации дисциплины осуществляется в соответствии с требованиями ФГОС ВО по данной образовательной программе.

11. Для студентов, обучающихся с использованием дистанционных образовательных технологий

При использовании электронного обучения и дистанционных образовательных технологий (далее ЭО и ДОТ) занятия полностью или частично проводятся в режиме онлайн. Объем дисциплины и распределение нагрузки по видам работ соответствует п. 4.1. Распределение баллов соответствует п. 6.2, либо может быть изменено в соответствии с решением кафедры, в случае перехода на ЭО и ДОТ в процессе обучения. Решение кафедры об используемых технологиях и системе оценивания достижений обучающихся принимается с учетом мнения ведущего преподавателя и доводится до сведения обучающихся

Аннотация к рабочей программе дисциплины

«АВТОМАТИЗИРОВАННЫЕ КОМПЛЕКСЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ»

образовательной программы высшего образования — программы магистратуры

20.04.01 – **Техносферная безопасность** Направленность:

Безопасность жизнедеятельности в техносфере

Трудоемкость дисциплины: 4 ЗЕ (144 академических часа)

Семестр: 4 (заочная форма обучения)

Форма промежуточной аттестации: Экзамен

Содержание дисциплины

автоматизированных обеспечения Применение комплексов ДЛЯ безопасности. Основные направления обеспечения автоматизации ДЛЯ безопасности техносферы. Микроконтроллеры в комплексах обеспечения безопасности. Применение программируемых логических контроллеров комплексах обеспечения безопасности. Микропроцессорные комплексах обеспечения безопасности. Перспективные задачи автоматизации сферы обеспечения безопасности.